Turbocharge #

your ZX Spectrum

J'Dhn _Le.ttme

Turbocharge
your ZX Spectrum

John Lettice

Longman _

ZX SPECTRUM is a Trade Mark of
SINCLAIR RESEARCH LIMITED.

Longman Group Limited First published 1984

Longman House, Burnt Mill, Harlow,

Essex CM20 2JE, England ISBN 0 58¢ 91bk0O4 b

and Associated Companies throughout the

world. Printed in UK by Parkway Illustrated Press,
Abingdon

© Longman Croup Limited 1984

Designed, illustrated and edited by
All rights reserved. No part of this Contract Books, London
publication may be reproduced, stored in
a retrieval system or transmitted in any

form or by any means, electronic, The programs listed in this book have been
mechanical, photocopying, recording or carefully tested, but the publishers cannot
otherwise, without the prior permission of be held responsible for problems that

the Copyright owner. might occur in running them.

Contents

CHAPTER 1

Advanced introduction to the working Spectrum 7
CHAPTER 2

Built-in functions 17
CHAPTER 3

Interactive programming 25
CHAPTER 4

Information handling 31
CHAPTER 5

Handling arrays 4]
CHAPTER 6

Introduction to graphics 49
CHAPTER 7

Advanced colour 57
CHAPTER 8

The system variables 67
CHAPTER9

User-defined graphics 79
CHAPTER 10

Sprites and animation 89
CHAPTER 11

Memory in detail 99
CHAPTER 12

Sound 107
CHAPTER 13

Inferface 1 and interfacing 117
APPENDIX 127

INDEX 155

Many of the programs and routines in
this book have been developed,
SAVEd and used on Sinclair
Microdrives. This means that such
programs will need adapting for use
on cassette. In general, thisis
mentioned in the text introducing such
programs and routines. However, such
programs and routines may easily be
identified by a LOAD or SAVE
instruction of the following type:

LOAD * “M’;1; “name”
SAVE * “M’;1; “name”

To change these into a form suitable
for cassette, use the following:

LOAD “name”
SAVE “name” etc.

However, the order of SAVEing and
LOADIng data blocks and programs in
some of the programs will need to be
changed to the order in which they are
stored on cassette.

Advanced introduction
to the working Spectrum

Once you've got to grips with the
basics of programming your Spectrum
you'll probably be wondering about
the direction you should take next.
Should you start learning about
machine code, should you buy an
assembler, or should you try to make
your programs more structured?

Of these three courses structure is

4

So what is structure? As far as effective
programming 1s concerned, structure
1s about writing your programs in small
easily understood sections. Because
these can be slotted in and out of the
program with the aid of GOSUB your
programs can be altered easily, and
after you've been writing this way for
some time you'll find you have an
extensive library of subroutines that
you can slot into programs you write in
the future.

As your programming improves,
and as you add printers, Microdrives
and so on, you'll also want to improve
or modify your previous efforts, so if
you have your programs sectioned off
neatly it'll be that much easier to
understand what they're doing when
you go back to them.

As far as unstructured programming
1s concerned the main offender is the
command GO TO. Let's say you start
writing a program, and as you amble
through it you suddenly have a brilliant
idea about graphics or sound that

probably the easiest to learn about,
but it's often the hardest to stick to,
especially on a machine like the
Spectrum, which is much more geared
to producing good results than it is to
writing elegant programs. But for all
that, there are benefits to knowing a
little about principles of structure,
even if you don't always use them.

could be added to the main program.

So you add a GO TO, write the
brilliant routine, then add another GO
TO putting the program on course.
One routine uses two jumps, and what
If you have more good ideas of the
same sort? Your program soon turns
into a spaghetti-like thicket that's hard
enough to follow when you've just
written it. What happens when you go
back to it in a few days (never mind six
months) or when you give a copy of the
program to one of your friends?

Using subroutines whenever you
can stops this happening, and makes
everyone's life a lot easier. And think
about what you're doing with
subroutines. You're breaking a
program up into small easily
understood sections, and what does
this imply? You've got to think about
what you're going to do with a program
before you start writing it — so structure
1s as much about planning as it is about
using GOSUB.

Advanced introduction to the working Spectrum

Writing a program

| |, IDEA B
W
[2. ROUGH OUTLINE
w
3. SECTION OFF OUTLINE INTO SMALLER OUTLINES [

vV VeV VeV
(@) (b) (c) (d) (e)
(FURTHER SECTIONING IF NEEDED)

v

4. FLOWCHART THE WHOLE PROGRAM TO SHOW HOW THE SECTIONS
RELATE TO ONE ANOTHER

A 4
5 FLOWCHART EACH SECTION |

v

| 6. REPEAT 4 AND § UNTIL YOU HAVE PRACTICALLY A BASIC PROGRAM '

h 4
| 7. TYPE IN AND TEST EACH SECTION ONE AT A TIME]

A 4
| 8 TYPEINTHEPROGRAM LINES WHICH LINK ALL THESECTIONS |

9
Advanced introduction to the working Spectrum

-

The table here should give you a good
idea of how structure and subroutines
are linked. Once you've had an idea
for a program you can just start
hacking it in, but that really is asking
for trouble, and you're much better off
getting as much of it down on paper as
possible before you go anywhere near
a computer.

Let's say you decide to write a
program involving data handling. As
you'll probably be putting data into it in
any old order you'll need some form of
sort routine to organise it. Once you've
written such a routine all you have to
do is save it to tape or Microdrive and
you can use it in future programs in the
form:

100 GOSUB 100@:REM SORT

ROUTINE

999 REM SORT ROUTINE GOES
HERE

1000 ...

101@ RETURN

If you spend a lot of time on little
routines like this, maybe in ten years
time you'll find you never have to write
another one —all you need do is go to
your library! Note that putting the REM
at 999 instead of 1000 allows you to
chop it out to save space later on.

By working out your program
structures on paper first you're
thinking in terms of programs
consisting of control structures. By
assuming that the subroutines that
actually do the work can be added
later you're operating at a much higher
level than the Basic language can do,
and purists would even say that you
should write virtually all the program
on paper first.

10

o)

A 4
wn
=)
e
PROGRAM —+p O
CONTROL 4 5
- =
' Jra |
w2
4
(STOP)
A 4
____________ =
SUBROUTINES |
DATA INPUT :
|
|
|
SORTROUTINE fegt— |
’ |
|
|
DATA ANALYSIS :
|
PRINT OUT :
|
|
|
GET KEY |
|
____________ B

Advanced introduction to the working Spectrum

But this i1s really a hang-over from
the days when programmers used
mainframes, and computer time was
scarce. If you work out the structure on
paper, then perfect your subroutines
on screen, that will be perfectly
adequate. In this case a printer would

be useful, as you can't have more than
24 lines of program on the screen at
once, and you'll tie yourself in knots
handling more than one subroutine in
memory at a time, but you can get by
without.

AS A RULE

One important thing about subroutines
1s that they flow evenly and logically -
you go Into them at the beginning, and
come out of them at the end. Look at
what's happening here:
10 GOSUB 100
20 e
20 ...
99 REM SUBROUTINE STARTS
120 ...

10 ...

120 IF A$="EXIT” THEN GO TO
20

130 &

140 RETURN

By writing a program like this you'd be
negating the point of subroutines,
because you're putting in a jump out of
it at line 120. If your subroutine was
very long you might want to put in a
GO TO to speed the program up
(stopping the Spectrum checking
through a lot of lines it doesn't need to)
but this is a reason for breaking your
subroutine up into more, smaller
routines, and anyway you can still
speed the action by jumping to the
RETURN line.

TRY THIS

There's a good reason besides
maintaining logical program flow for
always exiting a subroutine through
the RETURN line. Type in this short
program and run it

10 GOsuB 100
20 STOP
100 GO TO 10

Now why did that happen? What
you've done 1s exhaust the part of the
Spectrum's memory known as the
'stack’. When you say GOSUB 100 in
line 10 the computer remembers line

10 in what is effectively a list called the
GOSUB stack. The first RETURN it gets
to sends it back to 10, so what we've
just written 1s a program that keeps
telling the computer to remember one
line without telling it it's allowed to
forget it.

If you think about it you'll see how
the stack operates — if you have
nesting subroutines it has to RETURN
to the second GOSUB line first before it
RETURN:S to the first. So the principle
is last in first out.’

Advanced introduction to the working Spectrum

0 b GOSUB I

T

GOSUB stores the line
number on the stack

10 " RETURN

RETURN takes it off

150

2000

2500

4000 RETURN

10

10

FULL!

12

Advanced introduction to the working Spectrum

The next thing you need to consider in true, and if it 1s, taking a specified
program structure is branching, which action. This generally takes the form IF

1s basically about how the computer condition THEN action.
makes decisions. You can think of this Along with IF. . . THEN you use the
quite simply as a way of making the symbols =, <, > and <>, which are

computer check to see if somethingis known as logical operators, and mean

Values
for A
and B

PRINT
wh B

d €

YES ’ ’ PRINT
"A<B"

13
Advanced introduction to the working Spectrum

equal to, less than, greater than and You can also combine conditions using
not equal to respectively, AND, OR the operators AND and OR:
and NOT are also operators.

6@ IF A=10 OR B=10 THEN
LET A=1@: LET B=5 PRINT “ONE CONDITION IS
IF A=B THEN PRINT “A=B”" TRUE”

IF A<B THEN PRINT “A IS 70 IF A=10 AND A=B THEN
LESS THAN B~ PRINT “BOTH CONDITIONS
IF A>B THEN PRINT “A IS ARE TRUE”

GREATER THAN B”

IF A<>B THEN PRINT “A

DOES NOT EQUAL B~

14
Advanced introduction to the working Spectrum

Loops

The final design structure we'll be 20 BEEP 1,1
dealing with in this chapter is the 30 NEXT I
FOR. . .NEXT loop, which helps you

: : : ke Here you're using a simple
%\1{1?;1?(2?‘{}1:3 to type in repetitive lines. FOR. . .NEXT loop to do something that

would otherwise take you 20 lines.
1@ FOR I=1 TO 20

FOR
SET START 0.
AND END
A 4
DO ACTION
v
NO
NEXT.
A 4

¥ TRY THIS

It's quite easy, and useful, to produce 50 NEXT J
nesting FOR. . .NEXT loops, or loops 60 NEXT I

Inside one another: This will print out the multiplication

1@ FOR I=1 TO 12 tables up to 12X 12. Note that you have
20 PRINT “Table for ”;1 to finish the last loop first (the] loop in
30 FOR J=1 TO 12 this case) otherwise you'll confuse

40 PRINT I;“x7;J;"=";1%) yourself. Try swopping round lines 50

and 60 to see what happens.

18
Advanced introduction to the working Spectrum

NO

NO

SET RANGE
LOOP1

v

SET RANGE
LOOP]

v

ACTION

h 4

W VES

'AS A RULE

Just as with GOSUBs you shouldn't
jump out of a FOR. . .NEXT loop before‘
1t's finished. For example:

1@ FOR I=1 TO 5@

20 IF I=25 THEN GO TO 40
30 NEXT I

40continue program

You'll have just the same sort of
problems here as you would jumping
out of a subroutine, so you should use
[F 1=25 THEN LET [=51:GO TO 30 to
take you to the end of it.

Checklist m——

In this chapter you've learned:

[0 Why you should try to write
structured programs.

0 How and why to use subroutines
(and how not to use them).

(0 How to use branches, and how to
simulate the features of more
structured Basics in Spectrum
Basic.

How to use IF. . . THEN.

0 How and why to use loops for
repetitive tasks.

g

Advanced introduction to the working Spectrum

s
ey

INBEESEEEE N
-'|

,?
[

Built-in functions

+= == O =l s o

17

All computers spend their time
calculating with numbers and most
programs need to be able to
manipulate numbers in various ways.
These methods of manipulation fall into
two main categories, functions and
operators. Operators are such things
as + — */and need a number either
side of them, ie PRINT 2+2.

Functions, on the other hand, take a

number as their argument and do
something to it, such as SIN which
converts 1ts argument into a sine. They
always produce a result, so when using
them you must always make sure that
the result is used, ie:

LET A=INT(10.2)
PRINT SIN(PI)

The RND function is one of the most
useful built-in functions on the
computer, although it is not strictly a
function since it does not work directly
on an argument. It can be used for a
number of things, from selecting
random answers to a question like this:

10 INPUT“How are you
feeling today”;A$

15 PRINT“That’s good ‘cause
1 feel ”;

20 LET B=INT(RND*4)+1 :

25 GOSUB (4@ AND B=1)+(50
AND B=2)+(6@ AND
B=3)+(7@ AND B=4)

3@ STOP

40 PRINT“Great.”:RETURN

50 PRINT“Fine.”:RETURN

60 PRINT“OK.”:RETURN

780 PRINT“Ugh!”:RETURN

Or, even simpler, you can print stars
onto the screen with this:

1@ FOR T=0 TO 100

20 PLOT INT(RND*255)+1,INT
(RND*176)+1

30 NEXT T

Normally you will want the result of a
call to RND to be a whole number
(integer) and as above, the form:

INTC(RND*R)+1
can be used, where R is the range
from 1 to R. This can be a little tedious
to type in if there are a lot of RND
selections to be made. A neater
alternative is to define a function to
produce the desired result, ie:

DEF FN R(R)=INT(RND*R)+1

Once defined within a program, this
can be used to produce integer
random numbers as follows:

PRINT FN R(6)

giving a number from 1 to 6 at random,
the throw of a dice for example, or LET
CARD=FN R(13).

A thing to note about RND is that it
1sn't truly random since the computer
switches on with everything set to a
predefined value. Switching off and on
and printing RND gives the same
number every time.

RND produces what is known as a
pseudo random number which is
created by taking a seed number and
performing a series of operations on it
with a set formula producing another
number. This result is then given as the
result of RND,; it is also made the new
seed with which the next random

Built-in functions

number is produced. This can be
demonstrated with the following
program which produces pseudo
random numbers between 0 and 6.
from a simple formula:

10 INPUT“Seed=";A

20 LET A=(A*75)+19200

40 LET A=A—INT
(A/256)—INT(A/256)

45 LET A=A—CINT
(A/65536)%65536)

5@ PRINT INT(A/10000)

60 GOTO 20

The RND function within the Spectrum
1s a lot more efficient and complex than
this and hence produces a longer
series. It will, however, eventually
repeat itself.

The seed can be set on the
Spectrum with RANDOMIZE and if you
try:

10 RANDOMIZE 1

20 PRINT RND

30 RANDOMIZE 1

4@ PRINT RND

you'll see that the randomize statement
causes the RND function to start at a
specific place in the series of random
numbers. This can be both an
advantage and a disadvantage
depending on the stage of program
development. If you are testing a
program that uses random numbers it
is useful to have RND start at the same
place so that the results can be
verified. However, once the program
works, having RND start in the same
place every time causes the program
to be predictable in which case there
18 no point in using RND at all. The way
out of this is to reset RANDOMIZE at
the begining of the program. This i1s
actually easier than it sounds since
there are a number of locations within
the Spectrum that change too quickly
to be predicted and hence are
effectively random. One of these is
23672, the number of TV frames, which
changes every 20 mS. If the first line of
the program includes RANDOMIZE
PEEK 23672 the chances of it picking
the same number every time the
program is run is 1 in 256, a lot more
random than many other methods.

Built-in functions

N

In the section on RND we used INT to
get whole numbers from decimals
with:

PRINT INT(RND*1@)+1

The INT function is used to change the
format of the number and split it into
two halves, each side of the decimal
point, and then feed back the left hand
side as the result, ie INTeger it, so:

PRINT INT(123.456)

prints 123. One thing to note about this
function is that it rounds the number
down so INT(23.999) gives 23 and not

¥ reat U e e S s ey

Another function that changes the
format of a number is ABS. This is used
to strip off the sign from the front of the
number and make it positive no matter
what it was before, So ABS(—2) will
give 2 and so will ABS(2). This function
1s useful for a number of things, such as
making sure that when printing or
plotting onto the screen, no values are
allowed that go negative and hence
give an error. Even more useful is
making a toggle allowing one key to
be used to turn something on or off.

- Like this:

10 LET T=1

20 IF T=1 THEN PRINT “PUSH
OF F”

30 IF T=@ THEN PRINT “PUSH
ON”

40 LET AS=INKEY$:IF A$=""
THEN GO TO 4@

45 PAUSE @

50 LET T=ABS(T—1)

60 GOTO 20

24 as one might expect. It may be
necessary to round the number in the
accepted way, 1e round the decimal
part up if it 1s .5 or more and round
down .499999 and less. This is easily
done by adding 0.5 to the number
before INTing it. Try this:

10 INPUT“Price=";A

20 PRINT“Rounds to:";
INT(A+.5)

30 GO TO 10

This is quite useful when dealing with
financial amounts since 55.55 pence is
normally taken to be 56 pence.

A function very close to ABS is SGN.
This returns plus one for any positive
number and minus one for negative
numbers. The odd one out is zero for
which SGN gives 0 since it is
debatable whether 0 is positive or
negative. As a demonstration try:

1@ INPUT A

20 PRINT A;” is ”;

30 IF SGNCA)=-—1 THEN PRINT
“negative.”:G0 TO 60

40 IF SGN(A)=1 THEN PRINT
“positive.”:GO TO 60

5@ PRINT “zero.”

60 GOTO 10

A much neater way of doing

this is to replace lines

30, 40 and 5@ with one

line:

PRINT (“negative.” AND

SGN(A)=-1) (“positive.” AND

SGN(A)=1); (“zero.” AND

SGN(A)=0)

Built-in functions

SIN, COS, TAN, ASN,ACS, ATN

- ko I

These are the trigonometric functions SO
and are used for messing around with ASN is antiSIN or arc SIN
angles. They fall into two sections ACS is antiCOS or arc COS
since ASN does the opposite of SIN, ie: ATN is antiTAN or arc TAN

10 LET A=SIN(2.5) Most people are used to working

20 LET B=ASN(A) with angles between 0 and 360

3@ PRINT A;” is the SIN of degrees, but the Spectrum (and most

"sg other computers) uses the

mathematician's form of splitting a
circle into 2*PI radians.

2 PiRads

1 Radian

21
Built-in functions

The Spectrum is better at this than
many computers as it includes Pl as a
predefined number and so
conversions can be handled a lot more
easily.

SIN, COS and TAN are defined
using a right-angle triangle and are
useful for graphics handling. For
instance, suppose you draw a square
on the screen with:

10 LET X=20:LET Y=20

100 PLOT X,Y
110 DRAW 20,0

22
Built-in functions

120 DRAW @,—20
130 DRAW —20,0
140 DRAW 0,20

and you want to turn it through 45
degrees to get a diamond. SIN and
COS can be used to calculate the new
positions for the lines. Alter the square
program to this:

10 LET X=4@:LET Y=40

15 INPUT “Angle=";A

16 LET A=FN r(A)

20 GOSUB 10@:REM DRAW
SQUARE

30 STOP

40 DEF FN r(A)=A*P1/180

100 PLOT X,Y

110 DRAW 20*SINC(A),

20*COS(A)

DRAW 20*SINCA+(PI/2)),

20*COS(A+(P1/2))

DRAW 2@*SINCA+PI),

20*COS (A+P1)

DRAW 2@*SIN(A+(3*P1/

2)),

20%COS (A+(3*P1/2))

150 RETURN

Adding and altering the following lines
will give a nice pattern.

15 FOR T=0 TO 36@ STEP 10
16 LET A=FN r(T)

25 NEXT T

30 STOP

The results of all these functions can
be nicely illustrated using graphs of
which SIN is the easiest. Try this:

10 FOR T=@ TO 2*PI STEP
0.1

20 PLOT T*10,SIN(T)*10+50

30 NEXT T

This displays the shape of a sine
wave and if you replace SIN by COS or
even RND you will get a better idea of

120
130
140

what these functions do. The following
program can be used to display the
various functions, and even mixtures of
them, such as SIN(1—SIN(3*T)).

5 GOSUB 100 : REM DRAW
AXES
1@ INPUT“Enter function:”;
AS
20 FOR T=0 TO 2*PI
STEP .1
30 PLOT T*23,VAL(A$)*
50+50
40 NEXT T
50 GOTO 10
99 REM DRAW AXES
100 PLOT 0,0
110 DRAW 0,100
120 PLOT 0,50
130 DRAW 150,0
140 RETURN

Note that when entering functions you
should use the single key entry
system.

Checklist mm——

In this chapter you've learned:

0 How RND works and how to define
a user function to give a specific
range of values.

[0 How the INT function works and
when to use it.

[0 How ABS and SGN work and what
they are useful for.

[0 How SIN, COS, TAN, ASN, ACS and
ATN work and how they are useful
for graphics.

[0 How to set up some user-defined
functions to convert degrees to
radians and radians to degrees.

Built-in functions

e T Projects

[0 Use the last graph plotting program
with a mixture of functions including
such things as ABS and SGN to see
how they work. See if you can
improve the axes by labelling them.

O Try writing your own pseudo
random number generator that can
generate a long sequence of
random numbers.

24
Built-in functions

When we say interactive
programming’ we mean something
quite simple — how you and your
Spectrum act together. You could
design a program that was hardly
interactive at all, for example a
graphics demonstration program that
simply cycled through a series of
pictures without you having to do
anything, but in most cases you will
physically have to press keys and give
the computer some information at
various points in the program.

So ‘interactive programming’ deals
with how you give information to the
computer, and how the computer
gives you its information back, on the
screen or on a printer. Naturally, if you

TYPE ANSWER AND ENTER

WHAT NOW?

want your programs to be as useful as
possible, you will also want to be able
to present the computer’s information
in as clear a way as possible, and you'll
want the information you give the
computer to be easy to type in, and
difficult for either you or the Spectrum
to make a mess of. This chapter is
intended to help you do this.

Why do you do this? Naturally you're
not an idiot, but as one day you may
want to sell your programs, you'll want
to make them as idiot-proof as
possible! For example, let's say you
use the following lines:

10 INPUT “Enter a number ”;A
20 GO TO 10

OOO0OOoOoO0O0oO0ooOoaO

M 1 i ¢ 1 i 0
I [0) 1 e v R
(N N N O I

26

Interactive programming

N

You've told the user to type ina
number, so if you type 1,2,3 and so on
that's fine. But what you think is a
number and what the computer thinks
1s a number may be two separate
things. Type ‘one’ Enter, and you'll
see one case of the computer
misunderstanding you. And remember
that while you think 1,000 is a number,

The Spectrum has two main ways of
getting information from the user,
INPUT and INKEY$. Some other
computers have a command GET, or
GET$, which is used in the form GET A
or GET A$, and this tells the computer
to wait for the user to press a key. It is
similar to INKEY$, but INKEY$ doesn't
wait for a key to be pressed, so you're
at a disadvantage.

Or are you? You can simulate it like
this:

10 IF INKEY$="" THEN GO TO
10

The Spectrum will now wait at this line
until you press a key, and when you do
this it will skip to the next line.

But what about our little INPUT
problem? First ask yourself what's
making the Spectrum return an error
when you type in 'one’. What you're
doing is typing in a string when it
expects a number, whereupon it tells
you where to get off. So you need to
prepare for the worst possible case,
and this means writing the program so
that it will handle strings without
stopping.

the one the computer expects is 1000.
In this case we've only messed up a
two line program, but imagine that
those two lines are part of an address
book program, that you've just typed in
100 addresses, and then you absent-
mindedly press the wrong key — nasty
thought, isn't it?

Try this:

10 INPUT “Enter a number

from 0-97;A%

20 IF CODE A$<48 OR CODE
A$>57 THEN BEEP .5,1:
GO TO 10

30 LET A=VAL A$

What this little program does is
accept whatever string the user types
in, checks its CODE value, then only
goes on to line.30 if this value is
between 48 and 57. The CODESs from
48 to 57 are of course the CODESs of the
numbers 0-9.

Now you could try this for larger
numbers, but the problem is that
CODE only returns the value of the first
character of a string. So if you typed in
something like 2¢32 it would read the
CODE of 2 only, and you'd still be
messed up. But never fear, all you've
got to do is get the Spectrum to check
the characters in A$ individually.

One way of doing this is to loop
through the characters one at a time:

20 FOR N=1 TO LEN A$

30 IF CODE A$(N TO N)<48
OR CODE A$(N TO N)>57
THEN BEEP .5,1: GO TO

10 >

Interactive programming

40 NEXT N
50 LET A=VAL A$

You now have a routine that checks
everything you type in letter, or rather
character by character, and gives a
petulant BEEP if you've made a
mistake. The expression A$(N TO N) is
the Spectrum'’s long-winded way of
specifying an individual character in a
string, so if N is 5 you're actually saying
A$(5 TO 5), which specifies the fifth
character in the string. A$(5 TO 6)
specifies the fifth and sixth, and so on.

You could start off with DIM A$(X),
which would have the added
advantage of allowing you to control
the size of the number (or what will

eventually become a number) by
limiting it to whatever you choose as X.
You could make your program even
more bomb-proof in this case by also
trapping errors by comparing the
length of the string typed in with N,
and if it was too great, again going
back to line 10.

What you're doing here is thinking
of ways to trap errors. Obviously you
can't trap them all when you're writing
the program, but if you think about
what you're doing, and update your
programs when you run into another
problem, you'll eventually have a much
more professional finished product.

A rule

When you're writing a program try not
to mix INPUT and INKEY$ too much.
Obviously if the program is asking for a
number or a filename (both greater
than one character) then INPUT is

useful, but in the main using a mixture
of the two 1s confusing, as the user will
tend to press Enter while the
program's executing.

TRY THIS

It's possible to trap errors in inputs by
making any number of characters you
like illegal. To do this, you should look
up the character codes in Appendix A
of the Spectrum manual. All you have
to do then is to trap any characters
with codes outside your chosen range:

1000 PAUSE 0@

1010 IF INKEY$=CHR$(13) OR
INKEY$=CHR$(32) THEN
GO TO 1030

1020 IF CODECINKEY$)<65 OR
(CODECINKEY$)>9@ AND
CODECINKEY$)<97) OR
CODECINKEY$)>122 THEN
GO TO 1000

1030 PRINT INKEYS$;

1040 GO TO 1000

If you RUN this program you'll see
that it operates like a typewriter.
You've made all characters except for
letters of the alphabet (upper and

Interactive programming

lower case) illegal. Not much of a
typewriter though, is it, because you
can't use any punctuation.

Check up the codes in the manual
and you'll find CHR$(13) is Enter (new
line) and CHR$(32) is Space. So in line
1010 you're checking to see if the key
pressed is one of these two, and if so
skipping the next line, which would
otherwise rule them illegal. Delete line
1010 to see this.

Other points of interest are the
PAUSE statement in line 1000, which
we're using to stop the keys we press
being repeated, and the semicolon in
line 1030, which makes sure the next
character 1s printed adjacent to the
last.

e (OO 15—

In this chapter you should have
learned:

[0 What interactive programming
means.

O The differences between INPUT
and INKEY$.

[0 How to use CODE to check that the
user of a program is hitting the right
keys, thus avoiding errors.

PRESS SPACE TO GO ON

29

Interactive programming

Projects

[0 Write a short routine that allows you
to INPUT names and addresses,
excluding numeric input for the first
row (where the name should go).
You could also insist on the first part
of the next row being a number, but
you'd have to allow for a symbol in
case the house didn't have a
number, say ‘#'. Keep tidying this
one up until it's bomb-proof.

0 Rewrite our poor man's word
processor so that it will also accept
punctuation and numbers.

30
Interactive programming

| 2 i
e
LI {
!
ERE
1
I,
3
|

I

Information handling may not sound
very exciting, but if you think about it
you'lll find it's crucial to you being able
to write programs that are exciting on
your Spectrum. After all, what does a
computer do? It stores information in
the form of numbers, so that when you
tell it to do something it consults the
information it's storing and acts

accordingly.

And it doesn't matter whether the
information you're dealing with is a
space invader or the size of your bank
balance - as far as the Spectrum is
concerned it's all the same, What does
matter is how efficient the way you tell
the Spectrum to deal with that
information is.

Note pads

Computers using the Basic language
have several forms of information
storage available to them, the most
obvious being in the form of DATA
statements. A DATA statement is
essentially just a list of numbers or
letters that you tuck at the end of a
program:

1@ FOR A=1 TO 10

20 READ B

30 PRINT A;” times two is
”;B

40 NEXT A

50 DATA 2,4,6,8,10,12,14,
16,18,20

Now this may look like a silly
program to you, particularly as you
know the two times table, and you also
know that:

1@ FOR A=1 TO 10

20 PRINT A;” times two is
"y A*2

30 NEXT A

is shorter and does exactly the same
thing. But think about it — as we've said,
you already know the two times table,
so why go to the trouble of working it
out over and over again? DATA
statements, you see, are lists of
information that you already have, and

there are times when it's a lot faster for
a program to just look up the list rather
than reinvent the wheel over and over
again.

What 1s happening in our DATA
statement version of the program is
that line 10 is counting through ten
different values for A, and for each
different value it reads B once. By
READ B we mean go down to the Ath
(Le. first, second, third etc) DATA
statement you find and set a new value

DATA

10

Information handling

for B each time. It's then just a matter of
the program doing what you've told it
to do with B.

One thing to remember about DATA
statements is that you can only READ
them once unless you use the
RESTORE command. In the case
above you'd say RESTORE 50 (1e
reactivate the DATA in line 50) and
then you could READ it for a second
time, from another line if you wished.
What you're doing with RESTORE is
resetting something called the DATA
pointer, which is used to keep track of
where you are in the DATA statement,
and stores the value of the last piece of

DATA you READ. You can have as
much or as little DATA in a line as you
wish - try changing it to:

5@ DATA 2,4,6,8,10
60 DATA 12,14,16,18,20

and you'll find it doesn't make a scrap
of difference.

We know that READ and DATA are
useful for storing information we
already know, such as user-defined
graphics or the notes for tunes, but
what if we want to store information
that varies? In that case we have to
look elsewhere.

Ways with arrays

We've looked at the note pad, and
seen its limitations, but fortunately the
Spectrum also has a filing cabinet
available! The easiest way to think of
an array 1s as a grid of boxes, or a

table, where you decide how many
boxes are in the grid.

You set these boxes with the DIM
command, and if you look at the
llustration below you'll see how it's

e S

/

DIM A (10) =| A | |

3
Informatio

3
n handling

done. By saying DIM A(10) you're

setting up storage space for ten pieces
of information which you can refer to as

A(1) to A(10). By saying DIM A(10,10)
you're setting up space for 10x 10, ie

100 pieces of information from A(1,1) to

A(10,10). You can imagine an array
10x 10x 10, which would be DIM
A(10,10,10), and you can produce four

or more dimensioned arrays - the only

limit is the amount of memory in the
Spectrum.

So far we've only dealt with arrays
holding numbers, ie numeric arrays,
but you can store string data in arrays
(including user-defined graphics) in
string arrays. These differ simply by
being DIMensioned DIM A$(X).
Suppose you want to keep a record
of a set of information, such as
addresses, or details about your

Think of it like this — DIM A(30)
instructs the Spectrum to set up a large
box containing 30 smaller boxes called
A(0), A(1), A(2) and so on. These
smaller boxes are called subscripts —
this should give you an idea of what the
Spectrum means when it gives you an
error message that says 'subscript
wrong'.

record collection. The information can
be broken down into a number of
different sections that you can deal
with easily, and each of which stores a
different piece of information. These
sections are called fields, and the
collection of fields on one subject is
called a record. A set of records can
then be said to make up a database.

Information handling

The requirements of a program needed to handle a database are:

l 1. Toallow you to enter and edit records J

I 2. To give you a mechanism for storing the database permanently

b

3. Toallow you to look up a specific record by specifying a field

[4. Anything else you think you want!

. S S S

TRY THIS

When you're designing a program of
this sort the first thing you need to do is
work out how the data is to be stored,

The next thing to do is to set up
some kind of control menu giving you
access to all the various options:

what arrays are needed and so on. For

example, take a brecord collection - 133 EEQ MENU
space needs to be set aside for the "
record title, the artist, the tracks, and 110 ';’;INT DATABASE OF “;
the dat_e recorded. This should do to 120 PRINT
start with, but you can easily add to it 13@ PRINT“ 1...EDIT DATA”
latggifei,'ggtrefte‘?vitt%the followin 140 PRINT” 2...SEARCH DATA”
e g 150 PRINT“ 3...LOAD DATA”
160 PRINT” 4...SAVE DATA”
10 REM SET UP ARRAYS 170 PRINT” @...END”
20 DIM T$(30,15):REM 30 175 PRINT” CURRENT RECORD
RECORDS WITH T$ 1S:”;PTR
HOLDING THE TITLES 180 LET A$=INKEY$
30 DIM B$(30,15): 190 IF A$="1" THEN GOSUB
REM ARTIST(S) EDIT:GO TO 100
40 DIM R$(30,14,15): 200 IF A$="2" THEN GOSUB
REM 14 TRACKS ON EACH SRCH:GO TO 100
RECORD 210 IF A$="3" THEN GOSUB
50 DIM D$(30,8) LOAD:GO TO 100
6@ DIM P$(15): 220 1IF A$=“4” THEN GOSUB
REM DATABASE TITLE SAVE:GO TO 100
65 DIM S$(15) 230 IF A$="@" THEN GOSUB
70 LET PTR=1:REM CURRENT FINI:GO TO 100
RECORD POINTER 240 GO TO 180

Information handling

Notice the way we're writing the 320 PRINT
program ~ so far we've decided what 33@ PRINT” 1...SELECT
we want to do, allowed array space for RECORD”
1, then approached it logically by 340 PRINT” 2...EDIT CURRENT
presenting the user with a series of RECORD”
options, each handled by a GOSUB. As 350 PRINT“ 3...STEP FORWARD
yet the program doesn't actually do A RECORD”
anything, so we'd best get down to 360 PRINT“ 4...STEP
writing the subroutines! BACKWARD A RECORD”
370 PRINT” @...MAIN MENU”
375 PRINT” CURRENT RECORD
N— IS:”:PTR
Working out the works 380 LET AS=INKEYS$
390 1IF A$="1" THEN GOSUB
One advantage the Spectrum has is its SLT:GOSUB CRR:GO TO
ability to use commands like GOSUB 300
A, where A is set to the value of a line 400 IF A$="2" THEN GOSUB
number. You can see the virtues of this CRR:GO TO 300
In the section above, as you can name 410 1IF A$=“3" THEN GOSUB
the subroutines with handy FWD:GO TO 300
mnemonics. All these subroutines can 420 IF A$=“4” THEN GOSUB
now be written and then the variables BKD:GO TO 300
set up to point to them. For instance, 43@ IF A$=“@” THEN RETURN
we'll start EDIT at 300; 440 GO TO 380

299 REM EDIT STARTS AT 300
300 cCLS

You'll have gathered by now that a

good way to design programs of this
type is to write the menu sections first.

310 PRINT“ EDIT MENU”

36
Information handling

Taking the simplest of the edit 655 1IF CODE(A$)>65 THEN GO

sections: TO 600
499 REM FWD (500) 660 IF VAL (A$)<1 OR VAL
INCREMENT RECORD (A$)>14 THEN GO TO 600
POINTER 670 PRINT “NEW TRACK ”;
VALCAS) ;“:";
T PTR=PTR+(PTR<31 s, 3 &
g?g e R 680 INPUT RS(PTR,VAL(AS))
519 REM BKW (520) 690 GO TO 600
DECREMENT RECORD
POINTER
520 LET PTR=PTR—(PTR>0) y g
539 REM SELECT (540) A
1000 CLS
RECORD: BY RMBER 1805 PRINT “*x.DATABASE
540 CLS oF: apy
550 INPUT E,,h_lTER RECORD 1806 PRINT “RECORD NUMBER:
NUMBER ”;A$ VepTR
560 IF VAL A$<1 OR VAL = o
A$>3@ THEN RETURN 1010 'fff};“;(P’;;g”LE
Zgg kgu:rIRﬂAL AS 1020 PRINT “B.DATE :”;
D$(PTR)
Now it's a question of producing the 1030 PRINT “C.ARTIST :”;
more complex field editor. Here it B$(PTR)
would be nice to have a subroutine 104@ FOR I=1 TO 20 STEP 2
that prints a record onto the screen, 105@ PRINT I; “ 7;
which is what the GOSUB 1000 is all R$(PTR,I);” 7;14+1; 7;
about: R$(PTR,I+1)
599 REM CRR FIELD EDITOR 13?3 EEQR;
600 GOSUB 1000:REM PRINT
RECORD After that we can deal with a few

610 INPUT “ENTER LETTER OR easy options from the same menu:
NUMBER OR FIELD TO

S BS()TR$() DS()
5 orar IbTAS = IR ANRU) 800 INPUT “ENTER FILE
. “NEW DBASE TITLE: ”;P$ NAME :”:F$
e et I 810 SAVE F$+'P” DATA P$()
ey L 820 SAVE F$+“T” DATA T$Q)
T$(PTR):GO TO 600
e 830 SAVE F$+“B” DATA B$()
630 IF A$=“B” THEN INPUT 2
’ 850 SAVE F$+“D” DATA D$()
18 e 860 RETURN
S0 A Y BN 899 REM LOAD P$() T$()
NEW ARTIST: ”;B$(PTR) <N
650 IF A$="X" THEN RETURN BN KECIDBE)
37

Information handling

900 INPUT “ENTER FILE
NAME :”;F$
LOAD F$+"P”
LOAD F$+ T
LOAD F$+B”
LOAD F$+"R”
LOAD F$+"D”

RETURN

910
920
930
940
950
960

The above could easily be converted
to Microdrive by prefixing the file
names with **m”; 1; and this would give
you a fairly fast filing system.

DATA
DATA
DATA
DATA
DATA

P$C)
T$0O
B$()
R$ ()
DS ()

The final section of the program is the
search routine, which looks through
the entire database for a specific field
and then displays the record, or

records, that contain it. This is where
the single record display routine
comes in handy.

1499
1500
1510
1520
1530
1540

1550
1559
1560
1570
1580

1590
1599
1600

REM SEARCH

CLS

LET PTR=1

PRINT“ SEARCH”

PRINT

INPUT “ ENTER STRING
TO BE SEARCHED FOR ”;
A$

LET S$=A%

REM SEARCH TITLES
GOSuB 2100

FOR T=1 TO 30

IF S$(1 TO 15)=T$(T)
THEN LET PTR=T:GOSUB
1000:GOSUB 2000

NEXT T

REM SEARCH DATES

LET S$=A$

O

000

Information handling

1610

1620
1630

1640
1659
1660
1670
1680
1690

1700
1709
1710
1720
1730
1740
1750

IF LEN S$<8 THEN LET
S$=S$+” “:GO0 TO 1610
FOR T=1 TO 30

IF S$(1 TO 8)=D$(T)
THEN LET PTR=T:GOSUB
1000:G0SuUB 2000

NEXT T

REM SEARCH ARTISTS
LET S$=A$

GOsSuUB 2100

FOR T=1 TO 30

IF S$(1 TO 15)=AS$(T)
THEN LET PTR=T:GOSUB
1000:GosuB 2000

NEXT T

REM SEARCH TRACKS
LET S$=A$

GOSUB 2100

FOR T=1 TO 30

FOR S=1 T0 14

IF S$(1 T0 15)=
R$(T,S) THEN LET
PTR=T:GOSUB
1000:GosuB 2000

1760
1770
2000
2010

2020
2099

2100
2110
2199
2200

2210
2220

NEXT S:NEXT T

RETURN

PRINT AT 20,0;“PRESS
SPACE TO CONTINUE”

LET C$=INKEY$:IF C$<>
“ " THEN GO TO 2010
RETURN

REM MAKE S$ UP TO 15
CHARS

IF LEN(S$) <15 THEN
LET S$=S$+“ ”:GO TO
2100

RETURN

REM FINISH STARTS AT
2200

INPUT “ARE YOU
SURE?”; A$

IF A$<>“Y” THEN RETURN
STOP

You now have the makings of a
primitive database, but there's still one
thing you have to do. Go through the
program again, and set up the
variables for the GOSUBs in a new line

39
Information handling

10 as follows: The EDIT section, for
example, starts at 300, so you should
say LET EDIT=300.

10 LET EDIT=300: LET
SRCH=1500:

LET LOAD=9@0: LET

SAVE=800:

LET CRR=60@: LET SLT=540:

LET FWD=500: LET BKD=520:

LET FINI=2200

The database you've got holds 30
records, and has a maximum field
length of 15 characters. You can alter
these numbers depending on how
much memory you have available, and
how long you want the data to take to
load.

Checklist m——

In this chapter you should have
learned:

(0 The differences between arrays
and DATA statements, and the way
you can use both these methods of
handling information in your
programs.

[0 How to use RESTORE.

[0 How to write a database program
logically, using a combination of
menus and GOSUBs.

Project

[0 Rewrite the database program so
that 1t will catalogue a collection of
books, or the addresses of your
friends.

40
Information handling

‘F‘f‘_ﬂi

e |

|

— 1
B

xR

e _

k

One of the major uses of arrays, both
numeric and string, is in adventure
games. These allow you to wander
around a sort of maze picking up
pieces of gold and confronting various
monsters.

Let's see how we can write a
program that allows you to define the
rooms and passageways and wander
around them. As with the file handling
program, the best way to start the
program design is to work out what
arrays will be needed.

Since the program needs a set of

~ =

o
%é"

descriptions for the rooms etc. we
need a string array to hold these. The
total number of locations possible is set
by the amount of memory you have
available. In the program that follows
this is set to 10 using the variable M.
This can be increased until the
memory runs out. The length of the
description string is set with T, this can
also be increased but it does eat up
large quantities of memory. The trade
off is between lots of locations with
short descriptions, or less with large

descriptions.

4

42
Handling arrays

To use the description array we will
also need a set of pointers to allow the
rooms to be linked together in various
ways. We also need to set the pointer
array to default values. The following
section does just this,

BORDER 3

INK 3

LET T=30

LET M=10

DIM D$(M,T)

DIM S(M,4)

DIM E(M,4)

LET B$="N0"

FOR T=1 TO M: FOR S=1
TO 4: LET E(T,S)=-1:
NEXT S: NEXT T

The next thing to do is to set out
some kind of control for the program.
This 1s the main menu and gives the
options to edit the descriptions, load
and save definitions, link up the rooms
in a random way, and play the game.
This 1s set out as follows:

40 CLS

45 DEF FN R(R)=
INT(RND*R)+1

50 PRINT “ SIMPLE
ADVENTURE”

60 PRINT

70 PRINT “ 1...PLAY”

80 PRINT “ 2...EDITOR”

90 PRINT “ 3...LOAD”

100 PRINT “ 4...SAVE”

11@ PRINT “ 5...RANDOMIZE”

115 PRINT “ 6...END”

120 LET AS=INKEY$:IF A$="

THEN GOTO 120

IF A$=“1" THEN GOSUB
600:G0TO 40

IF A$="2" THEN GOSUB
230:G0TO 40

IF A$=“3" THEN GOSUB
900:GOTO 40

43

160 IF A$=“4" THEN GOSUB
800:GOTO 40
IF A$="5" THEN GOSUB
450:G0T0 40
IF A$="6" THEN GOSUB
200:G0TO 40

190 GOTO 120

Taking the easiest option first we will
define the end option. To make sure
you don't come out of the program
without saving the data, it is generally
a good idea to ask before doing
something as drastic as stopping.

200 INPUT “ARE YOU SURE ”;
B$

210 IF B$=“YES” THEN STOP

220 RETURN

The next sections are the major parts
of the program. Let's take the editor
first. This is again controlled from a
menu giving all of the major needs to
be able to define a series of locations.
The menu is written in exactly the
same way as the main menu; note that
the REM statements are notused,
allowing them to be removed to save
space later on.

225 REM THIS IS THE EDITOR
230 CLS

240 PRINT “EDITOR MENU”
250 PRINT

260 PRINT “1...LIST
LOCATIONS”

PRINT 2.5 EDIT
LOCATION"

PRINT “3...MAIN MENU”
LET A$=INKEY$

IF A$="1" THEN GOSUB
340:G0T0 230

IF A$="2" THEN GOSUB
410:G0TO 230

IF A$=“3" THEN GOSUB
1000:RETURN

GOTO 290

170

180

270
280
290
300
310
320

330

Handling arrays

Taking these options in order, here is a
routine to list the locations that have, or
haven't, been defined. Obviously if
there are a large number of locations
1f's a good idea to allow some kind of
escape mechanism to get back to the
previous menu.

335 REM LIST LOCATIONS
34@ PRINT “HIT ‘S’ TO STOP”
350 FOR T=1 TO M

360 PRINT T;“==>";D$(T)
365 PRINT “EXITS ARE ”;
366 FOR S=1 TO 4:PRINT
(“NORTH ” AND E(T,S)=0
AND S=1); (“SOUTH ” AND
E(T,S)=0 AND $=2);
(“EAST ” AND E(T,S)=0
AND S=3); (“WEST ” AND
EC(T,S)=0 AND S=4);:
NEXT S

PRINT

LET A$=INKEY$

IF A$=“S” THEN LET T=M
390 NEXT T

400 RETURN

One of the clever things about the
Spectrum's Basic is the ability to
perform the print statement in line 366
allowing the exits to be printed only if
they have been specified by putting a
zero in the E' array.

This direction specification is
performed in the edit location section
that follows. This just asks for the
location number and then expects a
set of exit directions. These are north',
‘south’, ‘east’, and ‘west'. Directions
such as 'up', and 'down’ etc. can be
added by changing the DIM in line 25
and 30 to allow space in the Eand S
arrays.

4@5 REM EDIT LOCATION
410 INPUT “ENTER LOCATION
T EDIT 3L

367
370
380

44

420 PRINT D$(L)

430 INPUT”"==>";D$(L)

431 INPUT “Enter exits
n/s/e/w ";A%

After entering information you don't
need to use it all. The next section
checks the entries and puts them in
the correct positions on the ‘E’ array.
North being E(T, 1), South being E(T,2)
and East and West being 3 and 4
respectively. Using this routine allows
the exits to be entered in the wrong
order without confusing the program.

432 FOR T=1 TO 4

433 FOR S=1 TO LEN A$
434 LET E(L,T)=((A$(S TO
S)="N") AND T=1)+
((A$(S TO S)="S") AND
T=2)+((A$(S TO S)="E")
AND T=3)+((A$(S TO
S)="W") AND T=4)-1
IF ECL,T)=0 THEN LET
$=5

437 NEXT S:NEXT T

440 RETURN

Once all the locations have been
defined and described they need to
be attached to each other. Normally,
an adventure will have these
predefined as part of the game. Since
this is a simple adventure and contains
no moveable objects we have to make
it exciting somehow. This is done by
allowing locations to be attached
randomly to each other but making
sure that if you exit south, then you
must enter north.

444 REM JUGGLER

450 GOSUB 1060

455 FOR T=1 TO M

460 FOR S=1 TO 4

470 IF E(T,S)=-1 THEN
GOTO 500

435

Handling arrays

480 IF E(T,S)<>@ THEN
GOTO 500

GOsuB 520

500 NEXT S

510 RETURN

The juggler routine is split into three
main parts. The first is a subroutine that
resets the original directions into the E
array (subroutine 1060). The juggler
then goes through the locations and
checks whether they have any valid
exits. If they contain 0, an exit, the
routine jumps down to line 520 and
roots through 100 random locations
until one is found that fits the bill of
matching North for South, East to West
etc. The location numbers are then
swapped over in the E array, making a
connection.

490

45
Handling arrays

515
520
530
540

545

550
570
580

REM SWAP EXITS

FOR U=1 TO 100

LET V=FN R(M)

IF (S=1 AND E(V,2)<>0)
OR (S=2 AND E(V,1)<>@)
OR (S=3 AND E(V,4)<>0)
OR (S=4 AND E(V,3)<>0)
THEN GOTO 570

LET E(V,(S=2)+
((S=1)*2) + ((S=3)*4)+
((S=4)%3))=T

LET E(T,S)=V:LET U=100
NEXT U

RETURN

When all the locations have been
covered, the routine returns to the
main menu.

The next major section of the
program allows the adventure to be
run. First the description of location
one 1s displayed and then the exits are
given. After entering the direction to
be followed, lines 640 and 650 work out
whether the direction is valid or
whether it has not been assigned. Line
680 assigns the new location number to
L, the correct position.

599 REM MAIN GAME

600 LET L=1

6@5 PRINT D$(L)

620 PRINT “EXITS ARE ”;
(“NORTH” AND EC(L,1)
<>—1); (* SOUTH” AND
E(L,2)<>—1);(“ EAST” AND
E(L,3)<>—-1); (" WEST”
AND E(L,4)<>-1)

PRINT A$;”
INPUT “WHICH WAY ”;A$
LET A$=A%$(1 TO 1)

IF (A$="N" AND E(L,1)=
—1) OR (A$="S” AND
EC(L,2)=-=1) OR (A$="E"
AND EC(L,3)=-1) OR
(A$="W" AND E(L,4)=-1)
THEN PRINT “SORRY, YOU
CANT GO THAT WAY”:
GOTO 620

IF (A$="N" AND E(L,1)=
@) OR (A$="S” AND
E(L,2)=0) OR (A$="FE"
AND E(L,3)=0) OR
(A$="W’ AND E(L,4)=0)
THEN PRINT#YOU

ARE IN THE

WILDERNESS, YOUD BEST
GO BACK”: GOTO 610

IF A$=“F” THEN GOSUB
700

IF B$=“YES” THEN RETURN
IF A$="L" THEN GOTO 610

625

630
635
640

650

660

670
680

46

682 LET L=((A$="N")*E(L,1))
+((A$="S")*E(L,2))+
((A$="E")*E(L,3))+
((A$S="W)*E(L,4))

IF L=0 THEN PRINT “EH
PMILET L=1

690 GOTO 610

The other options are L which
reprints the current description, and F
which allows you to get back to the
main menu. Again, to make the
program as idiot-proof as possible, it 1s
a good idea to ask whether the player
would like to end or not with:

700 INPUT “ARE YOU SURE ”;
B$

710 RETURN

799 REM SAVE D$() E() SQO)

The final subroutines are generally
concerned with data handling, and
allow the main game array to be saved
and loaded from tape or microdrive.

800 INPUT “ENTER ADVENTURE
FILE NAME ”;F$

SAVE *“m’;1; F$+S”
DATA SQ)

SAVE *“m’;1; F$+D"
DATA D$()

SAVE *“m’;1; F$4P”
DATA EQ)

RETURN

REM LOAD S(O) EQ) D$Q)
INPUT “ENTER FILE
NAME “; F$

LOAD *“M";1; F$4~S”
DATA SC)

LOAD *“M’; 1; F$+“D”
DATA D$CQ)

LOAD *“M’;1; F$+“P”
DATA EC)

RETURN

685

815
820
830
840
899
900
910
915
920
930

Handling arrays

Since the juggler program alters the

E array, to re-juggle the program the
directions need to be saved
somewhere. The following two
routines load and save the E array in
the S array (S for save)

999

1000
1010
1020
1030
1040
1050
1059

1060
1070

REM STORE ORIGINAL
DIRECTIONS

FOR T=1 TO M

FOR S=1 TO 4

LET S(T,S)=E(T,S)
NEXT S

NEXT T

RETURN

REM RETRIEVE ORIGINAL
DIRECTIONS

FOR T=1 TO M

FOR S=1 TO 4

1088 LET E(T,S)=S(T,S)
109@ NEXT S
1108 NEXT T
111@ RETURN

And that's it. You can probably think
of hundreds of improvements to this,
and it has been written in such a way
as to allow these to be entered with
ease. The art of using the program to
define a good adventure 1s to make the
locations interesting enough so that
they stand up on their own. If you want
to provide monsters then simply enter
a description such as

You stand in a dank dark closet.

From the corner comes a piercing

shriek which dies away into a

whimpering moan

Handling arrays

Checklist

In this chapter you should have
learned:

(0 How the Spectrum can handle
multiple arrays, and how you can
make them relate to one another.

[0 To make sure your REM statements
come in the line before a
subroutine starts, so that they don't
interfere with your reading of the
program.

[0 How AND can be used to sort
through possible options in a
program.

[J The way to use random GOSUBs to
bring an element of chance into the
program.

Project

[0 Try adding a section that allows you
to pick up pieces of treasure to the
program.

48
Handling arrays

The Spectrum's graphics facilities are picture elements, or pixels. The
fairly easy to use — graphics are much Spectrum has 255X 176 of these.

more complicated on many home But there's one major disadvantage
micros. On the Spectrum graphics to graphics on the Spectrum. You can
basically fall into two categories — only set INK and PAPER colours down
user-defined graphics, which are to individual character positions, not to
based on the 32X 22 character pixels, and, while you can get round
positions available on the Spectrum'’s this if you remember it, you can make
screen, and the PLOT and DRAW a dreadful mess of the screen if you get
group of commands that allow you to your sums wrong.

produce graphics down to individual

TRY THIS

Let's say you want to draw a grid on What you should have here isa
the Spectrum'’s screen, you'd possibly program that draws coloured lines
use something like this: vertically on the screen, then draws
10 CLS horizontal lines across them in a
o, different colour. But as the second
gg ;8"2 QTSPI(())T 2N5 3@ STSRP A\? group of lines is going through the
) 175' £ character positions occupied by the
40 N E’XT N first group of lines, it resets the INK
50 FOR N=5 TO 173 STEP 8 colour of those lines to the new INK
N b colour.
60 I;;'; g PLOT @,N: DRAW You'll get the same effect whatever
70 NEXT' N screen handling commands you use,
80 GO TO 20 so even if you're using user-defined
65535
User-defined Graphics
65368
Space for data and machine code programs
. RAMitop
Basic program area
23296
Screen display
16384
ROM
50

Introduction to graphics

Y

graphics you'll find that anything in
another INK colour being drawn in that
position will change a graphic's colour,
Usually this is a problem, but there are
instances when it can be useful.

Let's say you design an invaders'
type game, using PLOT and DRAW to
deal with the lasers. If a white laser
beam enters the invader's character
position it could be used to turn the
alien white before you make it
disappear or explode.

It's all very well to be able to draw
pictures and fill them, and there's no
great problem saving them on tape as
a SCREENS$, but you'll have noticed
how long it takes to reload a picture.
This is fine if you want a display on the
screen while a long game is loading,
but if you wanted to call up a series of
pictures within a game it'd be useless.

It's at this point that it becomes
handy to learn a little about how the
Spectrum organises its memory. The
diagram here shows part of the
Spectrum’s memory map - for more
information you should refer to chapter
24 of the Spectrum manual. The 48K
Spectrum has 65,536 memory locations
altogether, and you can think of these
as boxes that can store numbers.

Each of these addresses can hold
one byte, which 1s a number from
0-255. Now think about the way you
define user-defined graphics — each
line of the graphic defined contains an
elght digit binary number from
00000000 to 11111111 which, if you
convert it to decimal, is somewhere
from 0-255.

Now you can store numbers of this

51

order in all memory locations, not just
in the locations that deal with user—
defined graphics — chapter 25 of the
Spectrum manual shows you what is
actually stored in the memory area
from 23552 to 23733, and what you can
do by varying this.

Most of the area above 23296
consists of the Basic program area,
which stretches up to RAMtop, beyond
which you find the user-defined
graphics. A Basic program will not
interfere with anything stored above
RAMtop (literally, the top of Random
Access Memory), so it's possible to
store information above this point, and
provided your Basic program doesn't
POKE any new numbers into this area
it's possible to call up machine code
routines from Basic.

TRY THIS

As you're about to find out, the
Spectrum’s screen display is
organised in a bizarre and unnerving
fashion - don't worry too much about
this yet, as we'll show you how to get
round it shortly!

1@ FOR N=16384 TO 23295
20 POKE N,INT(RND*256)
30 NEXT N

Ask yourself what we're doing here
— the memory locations from 16384 to
22528 control the screen display, or
display file. We're POKEing a random
number from 0-255 into each of these
locations, and this is ultimately
producing a combination of dot pattern
and colour on each of the character
positions on the screen. Depending on
your taste, the effect is either colourful
or gruesome!

Introduction to graphics

But you'll notice that the Spectrum
draws the screen oddly, in small
sections, and finally inks in the colour.
This is because of the slightly odd way
it stores the screen information in
memory. If you add 40 GO TO 40,
incidentally, you'll suppress the report

line at the bottom of the screen, and
you'll find your display remains 26 lines
deep rather than reverting to 24 when
the report comes up. You can't actually
produce a display on the two report
lines from Basic.

O

&

Storing your treasures

From what you've learned so far it
should be clear how you can store and
recall a screen display. As the status of
the display is held as numbers from
0-265 in locations 16384-22528, all you
need is a routine that reads these
numbers, stores them elsewhere in
memory, and calls them back when
you need them.

But think of the practicalities before
you write it — this will be a routine
you'll want to use repeatedly, and
although it could be done in Basic
you'd then have to write it into all your
Basic programs. So what do you do?

Introduction to graphics

TRY THIS |

It's possible to decrease the size of the
Basic program area by moving
RAMrtop down. This leaves you more
space for machine code programs
which, with the qualifications we dealt
with above, do not interfere with Basic
programs.

1@ CLEAR 58430
20 FOR N=58431 TO 58450
30 READ B: POKE N,B:
NEXT N
40 DATA 33,08,64,17,83,228,
24,6,33,83,228,17,0,
64,1,0,27,237,176,201
50 NEW

What you've got here is a program
that brings RAMtop down to 58430 and
POKEs a machine code program into

e

the area above this. It then NEWs
itself, removing the Basic program
lines, but leaving the machine code
above RAMtop.

You can now draw your screen as
you wish, and call the routine to store it
with LET screen=USR 58431. You call
the screen back with LET screen=
USR 58439. The screen itself is stored
in the 6912 addresses from 58451 on.
This number 6912 comes from the
calculation of eight lines per character
position X 32 columns X 24 rows plus
32x 24 for the attributes of each
character position.

You can use any variable you like
instead of 'screen’, but bear in mind
that it should not be a variable used in
a Basic program you're running.

B

T -

Introduction to graphics

One of the more useful graphics
routines that is not provided on the
Spectrum is the ability to fill shapes.
There are a number of methods of
doing this, most of which are fairly slow
1n Basic.

The following routine is called the
‘grassfire fill'. From a specified point
inside the area to be filled, the routine
checks four adjacent points to see if
they have been filled. If they're not,
then they are filled and their locations
are saved in two arrays (one for the X
and one for the Y positions). This filling
continues until all the points inside the
area have been filled. The boundary
can be thought of as a trench dug
around the area which stops the
spread of the fire.

The size of the area to be filled is
limited by the size of the array used to
hold the adjacent points. This has the
disadvantage that the size is limited to
about a 200x 200 point square. The
advantage is that not too much memory
1s taken up and in the machine code
version you are sure of the routine
stopping eventually,

Try this and note how slow it is:

10 LET A=200:REM SIZE OF
POINT ARRAY

20 DIM X(A):DIM Y(A)

30 CIRCLE 100,100,30

40 LET X=105:LET Y=105

50 GOSUB 1000:REM FILL

60 STOP

999 REM GRASSFIRE FILL
STARTING AT X,Y

1000 LET P1=1:LET P2=2

1010 LET X(D=X:LET Y(1)=Y

1020 FOR D=1 TO 4

1030 LET T=—(D=1)+(D=3):
LET S=—(D=4)+(D=2)

1040 LET PX=X(P1)+T: LET
PY=Y(P1)+S

1050 IF POINT (PX,PY)=1
THEN GOTO 1100

PLOT PX,PY

LET X(P2)=PX:LET

Y (P2)=PY

LET P2=P2+1

IF P2>A THEN LET P2=1
NEXT D

LET P1=P1+1

IF P1>A THEN LET P1=1
IF P1<>P2 THEN GOTO
1020

114@ RETURN

Now enter the next routine and save
the machine code to tape, or
microdrive, with:

SAVE “FILL” CODE 3@519,173
or

SAVE *“M";1;“FILL” CODE
30519,168

5 REM MACHINE CODE
VERSION OF GRASSFIRE

10 CLEAR 30000

15 LET C=0

20 FOR T=30519 TO
30519+168

30 READ A:POKE T,A

40 LET C=C+A

5@ NEXT T

60 IF C<>15116 THEN
PRINT“CHECKSUM ERROR?
CHECK YOUR DATA
STATEMENTS.”

70 PRINT“POKE 30514 WITH X
LOC”

80 PRINT“POKE 30515 WITH Y
LOC”

90 PRINT“EXECUTE WITH RAND

USR 3@519”

DATA 62,0,50,48,119,62,

1,50,49,119

DATA 33,48,117,58,50,

119,119,33,48,118

1060
1070

1080
1090
1100
1110
1120
1130

100
110

Introduction to graphics

120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270

DATA 58,51,119,119,62,4,
50,52,119,33

DATA 48,117,58,48,119,
95,22,0,25,78

DATA 33,48,118,25,70,
58,52,119,254,1

DATA 202,130,119,254,
2,202,126,119,254,3
DATA 202,122,119,13,
195,131,119,4,195,131
DATA 119,12,195,131,119,
5,120,50,54,119

DATA 121,5@,53,119,58,
54,119,71,58,53

DATA 119,79,205,206,34,
205,213,45,254,1

DATA 202,198,119,58,54,
119,71,58,53,119

DATA 79,205,229,34,33,
48,117,58,49,119

DATA 95,22,0,25,58,53,
119,119,33,48

DATA 118,25,58,54,119,
119,58,49,119,60

DATA 50,49,119,58,52,
119,61,50,52,119

DATA 194,84,119,58,48,
119,60,50,48 ,119

DATA 71,58,49,119,184,
194,79,119,201,75

DATA 69,78,78

55

Watch how much faster machine code
Is in this program:

10 CLEAR 30000

20 LOAD *“M7;1;“FILL” CODE
30519:REM MICRODRIVE
LOAD, STRIP OFF *M7;1;
FOR CASSETTE

30 CIRCLE 100,100,30

40 POKE 3@514,100

50 POKE 3@515,100

60 RANDOMIZE USR 30519

70 PRINT“NEAT EH?”

Memory location 30514 is used to hold
the horizontal position of a point inside
the shape, and 30515 holds the vertical
position. Calling the routine at 30519
runs the machine code.

The CLEAR 30000, at the beginning
of the program, not only sets aside
some memory area for the machine
code, it reserves memory for the
arrays.

The machine code routine works in
exactly the same way as the Basic
program but, as you can see, is quite a
lot faster.

You will be able to fill any shape
with this routine. The only thing to be
careful of is to make sure that the edge
of the area has no gaps in it as this will
lead to the fire spreading outside the
required area.

Introduction to graphics

51

Checklist m—

In this chapter you should have
learned:

0 How the Spectrum organises its
screen, and how the picture on the
screen 1s stored In memory.

0 A little about the Spectrum'’s
memory map, and how to make

space for machine code by using
CLEAR.

[0 How to take a picture from the
screen, store it above RAMtop, then
call it back at will.

Project

(J Write a drawing program that
includes a Basic routine to read the
attributes of every character
position on the screen, and then
change the colour - see ATTR in
the Spectrum manual for help.

56
Introduction to graphics

If you've tried to draw detailed
pictures with your Spectrum, and if
you've also seen the title screens of
some of the more spectacular
commerclal games around, you'll
probably have asked yourself how
programmers do it. These games
apparently have highly detailed
opening screens where individual
pixels are marked in separate colours.
Now as you're probably aware the
Spectrum is perfectly happy having
individual pixels set as INK and
PAPER colours, but it has the limitation
that you can only set one INK and one

PAPER colour for each character
position — so how is it done?

The short answer 1s that it isn't done
this way. It may seem disappointing
that you can't alter this, but the fact that
superb pictorial screens are possible
on the Spectrum shows that, with a
little ingenuity, you can get round the
problem.

Really it's all a matter of drawing
your pictures so that your lines fit
easily into character positions — take a
look at the diagram here to see how it
should be done.

\\..—-——"‘"'-—-_

~
\

T ——

]

Right

58

Advanced colour

You already have a routine to fill in the
shapes you've drawn, but PLOTting
and DRAWing on the Spectrum can be
fairly tedious, and it's easy to make
mistakes. What you really need isa
way to DRAW shapes easily, one that
allows you to rub out your mistakes.
Naturally you'll want to use colour in
this routine, so you'll also need a way to
check when you're going out of a
character position's boundaries. If you
can see this on the screen it'll stop you
making too many messy mistakes:

10 LET INK=1: LET X=128:
LET Y=88

20 LET GRID=200:
LET REPORT=900:
LET PRINT=300:
LET STOP=500

3@ GOSUB GRID:REM SET UP
GRID

4@ GOSUB REPORT:REM SET
UP PRINTING IN REPORT
LINES

49 REM SET UP MODES

50 IF INKEY$=“1”" THEN LET
INK=1: GOSUB PRINT

6@ IF INKEY$="“0" THEN LET
INK=3: GOSUB PRINT

70 IF INKEY$="P” THEN LET
INK=0

75 GOSUB PRINT

80 IF INKEY$=“S” THEN
GOSUB STOP

99 REM MOVE CURSOR

100 IF INKEY$="“A” THEN LET

=X—-1

IF INKEY$="D" THEN LET

X=X+1

IF INKEY$="W’ THEN LET

Y=Y+1

IF INKEY$="X”" THEN LET

Y=Y-1

110
120
130

140

IF INKEY$="Q” THEN LET
X=X—1:LET Y=Y+1

IF INKEY$="E” THEN LET
X=X+1:LET Y=Y+1

IF INKEY$=“Z" THEN LET
X=X—1:LET Y=Y—1

IF INKEY$=“C” THEN LET
X=X+1:LET Y=Y-1

180 GO TO 50

In this program key in INK as I, N and

K; and key in PRINT and STOP in the

same way. They are variable names
A

notkey words.

150
160

170

ooa
B

What we have here follows the usual
format. With the exception of lines
100-170, which activate an eight-
direction cursor cluster around the S
key, the program so far consists of
GOSUBs. You'll notice, however, that
there'sa GOSUB for the menu (GOSUB
REPORT), and this is a new diversion.

There's a perfectly logical reason for
this. What we're producing here is a
graphics design program, so you'll
want to use the whole of the screen for
drawing on. If you have your menu
printed on the screen you'll find you
don't have the whole of it to draw on, so
the tidiest way of dealing with the
problem is by using the report lines,
which aren't available from Basic, and

Q
A

F
<

Advanced colour

clearly it would be foolish to tackle that
part of the program first!

Hold onto your hat though — we're
going to tackle that bit second.

Before we do, take a look at the
other subroutines we'll be writing. The
grid routine is fairly plain sailing. What
we'll do is produce a chessboard
pattern that will show the boundaries
of the character positions all over the
screen. INK and PAPER are obvious
enough, showing you whether you're
drawing a line or skipping, while
STOP will give you an elegant way of
bringing the whole show to a halt,
while PRINT will mess around with
POINT to sort out whether or not the
Image is on the screen.

The menu ¥
You've already seen how you can get
an image on the bottom two lines of the
screen by POKEiIng numbers into the
relevant parts of the display file — this
may seern a tedious way to do things,
but bear in mind that some micros
make you use POKE to print on all the
screen.

Still, you're probably wondering
how you work out the numbers you
should POKE into each location -
sounds tedious, doesn't it? Fortunately
itisn't. It's all a matter of looking in the
ROM for the dot patterns of what you
want to PRINT, then POKEing this
number into the part of screen
memory dealing with the character
position you want to PRINT at.

You could simplify this further by
working out the necessary DATA

60

you'd need to POKE in, then just
POKEing it in witha FOR. . .NEXT
loop, but we're not going to do this
right now, as the problem with DATA
statements is the fact that nobody but
the author understands them. And
besides that, the following subroutine,
apart from making the author's head
hurt while he was working it out,
allows you to print any characters you
like in the report lines. Just change
what's written in A$:

899 REM PRINT IN REPORT
LINES - REPORT=900
DIM A$(61)

LET A$=“MODE = DRAW
CURSOR = 128,88 PRESS
D FOR DRAW, S FOR
SKIP”

FOR N=1 TO 61

LET B=CODE A$(N)
LET C=15360+B*8

LET D=20671+N

FOR P=0 TO 7

POKE D+(256*P) ,PEEK
c+P)

980 NEXT P:NEXT N

99@ RETURN

If you want to see this program in
action add a PAUSE 0 line at 985 — this
will freeze the screen until you press a
key. Now exactly what are we doing
here? Lines 800 and 910 are fairly
obvious, dimensioning a 61 character
string array and defining it. Make sure
the string you type in has 61
characters, by the way, otherwise
you'll get an error message.

Line 920 begins a FOR. . .NEXT loop
which first obtains the CODE of the
character you're on, then defines C as
15360 plus eight times that CODE. The
address in memory where the
Spectrum's character set starts is
15360, and as each character has eight

900
910

920
930
940
950
960
970

Advanced colour

lines of dot patterns, taking up eight
addresses, the start address of any
given character is eight times its
CODE plus 15360.

Now we know where the character
starts we have to find out where to put
1t on the screen. Address 20672 is the
address of the first row of pixels for the
first character in line 22 of the screen,
and, as for each character position the
eight addresses go up in stages of 256,
you have to POKE your number into D,
then into D+256, then D+512 and so

61

on. This is what the first part of line 970
does.

But just to keep you on your toes the
ROM character set is stored in
consecutive addresses, so the second
part of 970 PEEKSs these. You then
move onto the next character, and the
next character position by adding 1 to
D, as the first address of the next
character position is | higher than last.
You might be forgiven for asking what
maniac devised the screen memory!

Advanced colour

Display memory map

LINE START OF LINE END OF LINE
0 16384 _ [16415
1 16416 \ F | 16447
2 16448 | ¥ | 16479
3 16480 : | 16511
4 16512 : | 16543
5 16544 = | 16575
6 16576 | 16607
7 16608 \ [[16639
8 18432 \| [18463
9 18464 B\ | 18495
12 18496 [\ 18527
11 18528 L | 18559
12 18560 . | 18591
13 18592 g [18623
14 18624 ; [18655
15 18656 3 | 18687
16 20480 Y | 20511
17 20512 \ | 20543
18 20544 A \ 20575
19 20576 1 \ 20607
20 20608] | | 20639
21 20640 : [20671 |
22 20672 : | 20703 .
23 20704 i | 20735 _

e

You'll notice that there is a system except in the case of the jump
of sorts to the screen memory. The between lines 15 and 16, where you
start of each line is 32 addresses have to add 1824.
above the start of the previous line,

S

62
Advanced colour

oy . - ——m —— S—
. B 3 1A . . ' d

L) 5 ;¥ W ARy i

W i 3 - rr L R N ¥ A L |

The location of the cursor is probably
the most important part of the
program, because if you can't judge
when you're leaving a given character
position you'll wind up with the most
unholy mess when you come to fill your
drawings in. Normally you'd think of a
cursor as a flashing square or as a
cross shape, but for this specialised
purpose you really need something
that shows the boundaries of the
square you're on.

So you could organise it as a dot with
a line drawn around the character
position it's currently in. But you'd have
to move this box before the cursor
came Into contact with it or it would
spoil your drawing, and this would be
quite fiddly. For the same reason
anything involving INK colour would
be difficult to manage as two rival INKs
in the same character position will
cause chaos.

Which leads us on to PAPER. If we
POKE cyan PAPER attributes into
every second character position on the
screen, we'll wind up with a blue and

white chess board pattern. You can
draw over this as much as you like,
then, when you're finished, toggle it off
and use the fill routine you collected
earlier.

199 REM SET UP GRID -
GRID=200

200 FOR N=22528 TO 23168
STEP 64

210 FOR P=@ TO 31 STEP 2

220 POKE N+P,48: POKE
N+P+33,40

23@ NEXT P:NEXT N

240 RETURN

Here N is again dealing with
memory locations, this time the area
used to store the attributes of a given
character position. Each of these
memory locations stores a specific
number for a combination of INK,
PAPER, BRIGHT and FLASH, so it's
just a matter of writing a routine to
POKE them into the right positions.

The table here shows the relevant
addresses for each position:

Attribute screen memory map

LINE START OF LINE END OF LINE
0 22528 ‘ [22559
i 22560 | | 22591
2 22592 \ | 22623
3 22624 | 22655
4 22656 | [22687
5 22688 il \\ 22719
6 22720 R\ 22751
7 22752 Y\ 22783 N
2/

Advanced colour

8 22784 | 22815 B
9 22816 | 22847 -
10 22848 | 22879 :
1 22880 | 22911

12 22912 5 | [22943

13 22944 | [[22975

14 22976 ;= (23007

15 23008 | | 23039

16 23040 A | 23071

17 23072 1B | 23103

18 23104 1 [23135

19 23136 (23167

20 23168 A [23199

21 23200 | 23231

22 23232 | 23263

23 23264).)| 23295

The only thing left to do is to 43@ LET B=CODE A$(N)
produce a method of altering the 440 LET C=15360+B*8
mode indicator in the report line. It 45@ LET D=20678+N
would be possible to incorporate it 460 FOR P=0Q TO 7
In our earlier routine for printing in 470 POKE D+(256*P) ,PEEK
these lines, but not doing this (C+P)
doesn't add much to the program: 480 NEXT P:NEXT N

299 REM PRINT 28| REVURH

300 PLOT INK INK;X,Y We could also tidy up the stop

399 REM CHANGE WINDOW routine,

400 i;_igg:;'THEN LET 499 REM STOP

410 IF INK=@ THEN LET g?g ;gEEN:fggza FUaSER

A$="SKIP”
ST

420 FOR N=1 TO & 520 NEXT N:STOP

64

Advanced colour

g 8 K g TR TR Tl

Once you've got to grips with the You should also be able to put the

Spectrum's screen memory, producing drawing program together with the fill
colour is relatively easy. Provided program to produce quite a

you've got your INK colours in the right convincing graphics program. Of
character positions, it's justa matter of ~ course there are plenty of things it
altering the attributes of the character can't do - in particular, it'd make life a
positions you want to colour. The table lot easier if you could magnify the

below shows you what you should character position the cursor was on so
POKE in for each combination of you could see individual pixels, but
effects. this could be added.
Paper Ink
Black Blue Red Magenta Creen Cyan Yellow White
Black 0 1 2 3 4 5 6 7
Blue 8 9 10 11 12 13 14 15
Red 16 17 18 19 20 21 22 23
Magenta 24 Ales 26 21 28 29 30 31
Creen 32 33 34 35 36 37 38 39
Cyan 40 41 42 43 44 45 46 47
Yellow 48 49 50 51 52 53 54 85
White 56 57 58 59 60 61 62 63

If you want a character BRIGHT then you add 64 to the attributes above, and
FLASH is obtained by adding a further 128.

65
Advanced colour

Checklist m———

In this chapter you should have
learned:

0 How to avoid making a mess of the
screen through clashes of DRAW
and INK and PAPER.

[J How to work out where to POKE in
screen memory to get an image on
the screen, and where else to
POKE to colour it.

[0 How to read dot patterns from
ROM.

e ——— Projects

[J Write a new subroutine to change
the attributes for the whole screen
In any way the user wishes.

[0 Write a typewriter routine that
takes what you key in and prints it
in the report lines.

66
Advanced colour

)
The systemvariables

H= AR L4 D,-
B OLOVR- # §

B NUMBCR =67 e
2an ﬂg EEas

The system variables are what the
computer uses to do its house keeping.
Such things as keeping track of the
current Basic program line, and the
state of the keyboard are all stored in
the system variables memory between
23552 and 23732. All of these variables
are available for the user to read but
not all of them are writeable, since
doing so can cause the system to
crash. Generally the crash is caused

by not knowing exactly what the
location is used for and POKEing
something into it at the wrong time.

Some of the variables can be very
useful and allow the Spectrum to be
tallored to suit a particular need, such
as completely redefining the character
set or writing on the status lines,

To avold unexpected results, turn
off, and then on, your Spectrum
between using the following routines.

68

The system variables

The following list gives some detalils
on the more useful variables and some
ideas of what they can be used for.

Before starting on these, there are a
couple of useful functions you can have
at your finger tips. The first allows a
two byte address to be PEEKed from
memory. This is:

DEF FN A(X)=PEEK X+256*PEEK
(X+1

and, as you will see later, it comes in
very handy when exploring pointers
that point to pointers.

To split a number (N) into its high
and low components, use the following
method:

HI=INT(N/256)
LO=N—256*INT(N/256)

This will also be used quite a lot
later on since most of the pointers in
the system variables are held as two
bytes, allowing addresses and line
numbers between 0 and 65535 to be
pointed to. Some of the system
variables are either so transitory or just
plain useless to us that they are not
worth bothering with for Basic
routines. Some of the ones not covered
may be of use to machine code
programmers but since this is a little
beyond the scope of this book, you
should look elsewhere for the detalls.

The locations from 23552 to 23559 are
used by the system for scanning the
keyboard. They are split into two sets
of four bytes. The second set is used to
control the detection of the first key
pressed. If another key is held down,
and the first then released, the first

four locations take over but have the
same functions. Taking the top set:

23556 contains 255 if no key is being
pressed, otherwise it holds the ASCII
code of the upper case letter of the
key.

23557 holds the current key repeat
speed counter, normally 5 and copied
from 23562.

23558 holds the delay number
between the press of the key and the
repeat time. This value is obtained
from 23561 and is normally 35. It counts
down to 0 before the key repeats.

23559 contains the lower case ASCII
code of the key currently being
pressed.

This location is used by the keyboard
scan routine to store the ASCII value of
the last key that was pressed. It could
be PEEKed instead of using INKEY$,
obviating the need to use CODE.

The system variables

23561 REPDEL

The number that specifies the delay
before the keys repeat is held here.
Any number between 0 and 255 can
be POKEd into this location - 0 turns
the repeat off completely, 1 gives
virtually no delay and the keys start
repeating straight away, while 255
slows the whole process down.

23562 REPPLR

The repeat speed of the keys is stored
here, and again can be changed to be
any value between 0 and 255. 0 does

- not turn the repeat off, it merely makes
the countdown wrap-around, 1e the
counter counts 0, 255, 254 etc - 1
speeds things up a lot.

23563 A DEFADD

These two locations hold the address
of the user-defined function currently

being evaluated. For example:

1@ FOR T=FN X(@) TO FN
X(@)+50

20 PRINT T;* %

30 PRINT PEEK(T);” ”;

40 IF PEEK(T)>31 THEN
PRINT CHR$(PEEK(T)):
GOTO 60

50 PRINT

60 NEXT T

70 DEF FN X(R)=PEEK
23563+256*PEEK 23564

Running this program gives you an
1dea of how functions are stored in
memory. Note that if no functions are
being evaluated, then DEFADD
contains 0.

23566 TVDATA

This location is similar to K DATA with
the exception that the second byte
holds the horizontal character position
of the last TAB or AT used.

2356823605 STRMS

The addresses of the various channels
attached to the streams are held in
these locations. To start with, the first
14 bytes hold the data for streams —3
to 3. As extra streams are added, the
information is inserted up to a total

of 19.

The address of the ROM character set
1s held in these two locations. The

The system variables

address is 256 less than the first
printable character, which may seem
odd at first sight. If you consider that
the first 31 characters are unprintable,
1.e. they are control codes, then it
makes sense, since the first printable
character is space with a code of 32
and 32*8=256. To find the address of a
character definition, the processor
need only multiply the code by 8 and
add this to CHARS.

A useful facility of this location is that
1t allows the whole character set to be
reshaped. The following program
relocates the character set into RAM
and then redefines part of ‘A’ (ASCII 65).

10 CLEAR 39999

20 PRINT “AAAAA”

3@ PRINT PEEK(23606),
PEEK(23607)

40 LET CH=PEEK(23606)+
256*PEEK(23607)

50 LET CH=CH+256

60 FOR T=0 TO 127%*8

70 POKE 40000+T,PEEK
(15616+T)

80 NEXT T

90 POKE 23607 ,INT((40000-

256)/256)

POKE 23606 ,40000—256%

INT (40000/256)

REM REDEFINE PART OF ‘A’

120 POKE 39744+(8%65) ,255

1380 PRINT “AAAAA”

- To restore the original pointer,
POKE 23606,0 and POKE 23607,60

100
110

23608 RASP

The value held here specifies the
length of the warning buzz.

23609 PIP

This one defines the length of the
keyboard click which can be POKEd
with a larger value to make the pip a
little more audible.

23610 ERR NR

One less than the report code 1s held
here and if a number is POKEd into the
location, it causes the appropriate
error to be generated.

23611 FLAGS

This location contains a number of
flags used by the Spectrum for various
operations. The eight bits are set out as
follows:

Bit 1 is set (1) when stream three is
to be used for output from a print
command. It is zero if stream 2 is being
used (3 1s normally the printer and 2 is
the main screen). Bit 2 is set when

The system variables

printing in 'l mode, and zero for 'K'
mode. Bit 3 is set when inputting in T/
mode, and zero when in 'K' mode.

Bit 5 1s set if a new key has been
pressed since it was last set to zero.

Bit 6 is used to indicate if the current
expression is a number (0) or string (1).

Bit 7 is zero when Basic is checking
a line for syntax on entry and set to one
when a program is being run,

Most of the flags are of little use for
POKEing, but can be useful status
indicators for PEEKing.

23612 TVFLAG

This set of flags is used to indicate the
status of the screen.

Bit 0 1s set if the lower part of the
screen 1s being used, zero if the main
screen is being handled.

Bit 3 signals that the current mode
('K', 'L’ etc) may have changed and
needs rechecking.

Bit 4 is set if an automatic listing is
being printed. Otherwise it 1s zero.

Bit 5 1s used to signal that the lower
part of the screen needs to be cleared.

12

236134 ERR SP

The name given to this location is
slightly wrong as 1t is actually used to
point to the line where a GOSUB was
called from. For instance, try:

1@ PRINT FN ACFN A
(23613)+2)
GOSuB 1000

STOP

DEF FN A(X)=PEEK X+
256*PEEK(X+1)
PRINT FN ACFN A
(23613) +2)
GOSuUB 2000
RETURN

PRINT FN ACFN A
(23613)+2)

2010 RETURN

The function FN A is used to get the
16 bit address from the location
specified as its argument. Thus, if it is
used twice, it gets the number pointed
to by the address of the first execution.
The +2 copes with the fact that the
GOSUB line numbers are kept on a
stack and the stack pointer has been
incremented by the time we are in the
subroutine. The program given above
could usefully be implemented in a
program that has problems with its
subroutines since it tells you where
each GOSUB comes from.

20
30
100

1000

1010
1020
2000

23617 MODE

The contents of this location define the
cursor and input mode to be used. For
instance, try:

1@ INPUT“Enter a number @-
255 ;A
20 POKE 23617,A

The system variables

30 GOTO 10

and notice how the different cursors
appear for different numbers. Try
entering numbers like 10 and 255 and
note how the cursor changes to 'O’ or
T. This can be useful when inputting
data that need to be put in a certain
mode, ie caps-lock or graphics.

This program can only be RUN

once.

These three can be taken together as
they can be used to define the next
line number and statement to be
executed by Basic. For instance, try:

1@ PRINT “LINE 1@

20 POKE 23618,1000-256%INT
(100@/256) :POKE 23619,
INT(1000/256) :

POKE 23620,3
PRINT“LINE 3@”

STOP

PRINT “LINE 1000 ST1”:
PRINT“LINE 1000 ST2":
PRINT“LINE 1000 ST3”
GOTO 30

30
40
1000

1010

This program will jump directly to
line 1000 statement 3, and the basic
1dea can be used in a number of ways,

-even from machine code, to jump
directly into a certain Basic line.

Again, these three can be taken
together since they point directly to
the statement currently being
executed. They are not really of much

use from within Basic, but they could
be used from an interrupt-driven
machine code routine to provide a
line/statement trace facility.

This contains the border colour
multiplied by eight. Bits 6 and 7 (64
and 128) can be used to make the’
lower screen flash and bright.
POKEing values into this location will
show what happens.

When the LIST command is used, or
an automatic listing is forced, these
locations hold the number of the line
that contains the editing cursor.
POKEing these two locations with
another line number will change it. A
possible use for this is to come out of a
program with the cursor in a certain
position.

Alternatively, the cursor can be

73
The system variables

23635/6 PROG

The address of the start of the Basic
program is stored here. This cannot
normally be altered, as on some
micros, so there is no possibility of
having two programs in memory at one
time without altering a lot more of the
pointers.

| 23637/8 NXTLN.

The address of the next Basic line
number to be executed is stored in this
location. Again, there is not really
much use to which this can be put,
besides perhaps allowing programs to
alter themselves. Try this and see what

removed by POKEing both of these
locations with zero, useful for listings.

happens:
23627/8 VARS 10 POKE FN A(23637)+6,65
20 REM “Hello there”
The pointer to the start of the variable 100 DEF FN A(X)=PEEK
storage is held in these locations. This X+256*PEEK(X+1)

pointer may be of some use to users If you now alter line 10 to:
who want to access the Basic variable
storage area from machine code 10 POKE FN A(23637)+4,245

programs, allowing data to be pressed . :
back and forth without resorting to andze-run the program youllsee how

programs can be made to alter
\ijr?a%lsg?el;?;{g;gﬁa %l?gtohuet otthe themselves. A clue to what happens is

) that 245 is a token.
Spectrum user guide.
23629/30 DEST 23639/40 DATADD
These hold the address of the first The address held here is used to keep

track of the last data item used. If there
1s no more data after this statement, an
‘Out of data error' occurs.

letter of the name of the variable
currently in use by Basic. If thisisa
new variable, they point to the location
immediately before E LINE, where the
start of the new variable is to be
stored.

74
The system variables

236412 E LINE

These two locations hold the address
of the start of the editing area and point
to the beginning of the line currently
being edited there.

23659 DF SZ

This location contains the number of
lines, including the blank one, in the
lower screen (status line). This value is
normally 2 but can be altered to 0 to
give two more lines on the main
screen. The drawback is that it must
be changed back to 2 before the end
of a program, otherwise the machine
will crash.

The number of lines specified here
can also be increased causing the
scroll ? message to occur further up
the screen. The problem here is that if
you answer yes, you get the ‘out of
screen' error. So the only real use is to
increase the number of screen lines to
24 like this:

10 LET AS=INKEY$

20 IF A$=” " THEN GOTO 100
30 POKE 23659,0:REM SEE
SCR CT

PRINT“AA";

50 GOTO 1@

100 POKE 23659,2

Note that if you break while the bottom
two lines are full, the Spectrum will
crash. Also don't try and use PRINT AT
as this also causes a crash.

40

23660/l S TOP

These two locations hold the line
number where the auto list starts and
POKEing these with a different
number is directly equivalent to using
LIST line number.

23662/3 OLDPPC

When the command CONTINUE is
used, this is where the line number to
restart from is kept, so running:

10 PRINT AT 0,0;“LINE @
20 STOP
10@ PRINT “CONTINUE 100"

then POKEing 23662 with 100, and
23663 with zero, then entering CONT
gives the expected result.

75

The system variables

FRAMES can be used to obtain fairly
accurate time to an accuracy of sgth of
a second. Try:

10 LET T=PEEK 23672+
(256*PEEK 23673)+
(65536*%PEEK 23674)

20 PRINT AT @,0;INT((T/
50)—6@*INT((T/50)/6@))

3@ GOTO 10

to get seconds. Since the number of
frames sent to the screen is counted in
3 bytes, the max number of ssths of a
second in 24 hours is:

16777216, and the number of sgths of a
second in 24 hours is;

4320000. This means that there is
ample room for a 24 hour clock. Simply
work out the correct numbers and
This location can be used in the same POKE them into FRAMES. A

way as OLDPPC but it points to the subroutine similar to the seconds
statement number within a line. demo above will then provide the
current time.

The seed used to generate the random

number, is stored here. POKEing As with the character set pointer
numbers into this location has exactly CHARS, UDG points to the user
the same effect as RANDOMIZE so: defined graphics. There are a number
of uses to which this pointer can be
;g ga;‘:gn ;ﬁg 1 put. First 1t, can be altered to point
30 POKE 23670.1:POKE higher up in memory, leaving some
23671.0 2 space fo; a maphme code routine. |
4@ PRINT £ RND Alternatively, it qould be used to point
to a number of different character sets
produces the same pseudo random defined in RAM. This is a little easier
number. than altering the standard character

set, as USR “A" always returns the
address of the UDG set pointed to by
23675/6, so the same routines can be
used to define all the different UDG
sets. Switching between them is
One of the things that the Spectrum simply a matter of changing this
lacks is a real time clock, or does it? pointer,

76
The system variables

The horizontal and vertical coordinates

of the last point PLOTted are held
here. This also applies to the DRAW
command and so these locations can
be used to provide an absolute move
command that allows the PLOT

position to be relocated without having

to resort to INVERSE. Try
10

PLOT @,0

DRAW 10,10
POKE 23677,50
POKE 23678,60
DRAW 10,10

These locations hold the address of the

print position in the display file and
could be used to provide an
alternative print routine.

Of more use are locations 23686/7 as
they normally give the address of the
start of the lower screen. This address
can be used along with a few others
discussed earlier to provide a routine

-for printing messages on the lower
screen. This program does just this
using the pointer to CHARS to get the
information about the character
shapes.

BORDER @

DIM A$(31)

LET LS=FN A(23686)
INPUT A$

FOR T=1 TO LEN (A$)

7

60
70

FOR S=0@ TO 7

POKE LS—1+(S*256)+T,
PEEK(C(CODE (A$(T TO
T)))*8+FN A(23606)+S)
NEXT S

NEXT T

PRINT“USE BREAK TO GET
OUT OF THE PROGRAM’
GOTO 100

DEF FN A(X)=PEEK
X+256*PEEK(X+1)

Note that exactly the same routine
can be used to print on the main
screen simply by setting LS to 16384 in
line 30.

80
90
100

110
1000

The screen print position is held here.
Oddly enough it takes its origin as the
bottom left hand corner of the screen
so the normal PRINT AT 0,0;"a" will
cause these two locations to hold 33
and 22 and not 0,0. They can be
POKEAd to provide a kind of PRINT AT
but this is likely to cause a crash.

The system variables

23692 SCR CT,

This location is used by the system to
control the scrolling of the screen and
when it reaches 1 the ‘Scroll ?'
message is displayed. This can be
avoided by POKEing a 0 or 2 into it
before each print statement. This can
be used to make the routine used to
increase the screen size (see DF SZ) a
little safer; simply add 35 POKE
23692,0 to get rid of the temptation to
break into the program.

As you can see, quite a few of the
system variables can be of some use
and, although there are times when
care should be taken, don't be afraid to
experiment a little as there is always
the option of pulling the plug when the
Spectrum crashes. Tailoring of the
character set and printing at unusual
places on the screen can come In very
useful in your own programs and, if you
ever become a machine code 'freak,
you'll probably find some of the more
obscure system variables provide the
chance to do something really slick,
which, after all, is the joy of
programming.

78
The system variables

User-defined graphics

Up to a point it's very easy to
understand how the Spectrum’s user-
defined graphics operate, asit's
simply a question of assigning eight
binary numbers to an 8 X 8 grid matrix
that makes up one user-defined
character, for example:

10 POKE USR “A"40,
10101010
POKE USR
21010101
POKE USR
10101010
POKE USR
21010101
POKE USR
10101010
POKE USR
01010101
POKE USR
10101010
POKE USR “A"+7,
21010101

PRINT “A”:

BIN

20 “A"+1, BIN

30 “A"+2, BIN

40 “A"+3, BIN

50 “N'+4, BIN

60 “A"+5, BIN

70 “A"+6, BIN

80 BIN

90 REM UDG

The eight lines above will POKE a
hatchwork pattern into the Spectrum's
graphic 'A', and you can see the sort of

pattern that will develop from the s
and Os in the binary numbers. Clearly
as you're specifying BIN before the
number -~ try it without and the
Spectrum will assume it's decimal, and
give you an ‘integer out of range’
message — you can ease the typing
problems by converting the number to
decimal. You can also POKE the
numbers in from DATA statements,
using a FOR. . .NEXT loop;

1@ FOR N=@ TO 7: READ B:
POKE USR “A”+N,B: NEXT N
20 DATA 170,85,170,85,170,

85,170,85

Now if you're sharp-eyed you'll have
noticed something significant about
the decimal numbers that isn't
immediately obvious from the binary
version, and that is that every second
number is half the one before, You'll
see why by looking at the binary
version, where they've had the zero on
the end lopped off. The reason for this
is that dividing a binary number by
two is just like dividing a decimal
number by ten.

This becomes even clearer if you try
this:

10 FOR N=0 TO 7: POKE USR
“B4N, INT(255/ (2 1 N)) :
NEXT N

By repeatedly dividing by two and
INTing it you're producing the series
of numbers 255,127,63,31,15,7,3,1,
forming a sort of wedge shape.

You should now be beginning to see
how arithmetical operations can be
used with UDGs. Performing
calculations on the numbers the UDG
locations contain can be important for
animation — we'll explore that later, but
can you guess how it's done now?

80

User-defined graphics

20 FOR I=0 TO 7

30 POKE 65368+1,INT
(RND*256)

40 NEXT 1

50 PRINT AT 10,16;"A":
REM UDG

6@ NEXT N

The difficulty many Spectrum users
face when they're dealing with user-
defined graphics is one of coming to
terms with what's actually going on
when you program them. In this sense
UDGs are their own worst enemy,
because they're so easy to program
that you're liable to miss the
opportunity to learn more about how
the Spectrum’'s memory operates.

What you should understand is that
the Spectrum's UDG area of memory is
really just another stack of memory
locations. For example:;

PRINT USR “A”

This prints the location of the first of
the eight addresses that make up the
Spectrum’s graphic A, 65368, so the
expression USR ‘A’ is just a way of
avoiding having to remember a
specific memory location.

Try this:

1@ FOR N=1 TO 10

65368
65369
65370
65371
65372
65373
65374
65375

=USR'A’

Thus little program redefines graphic
A by POKEing random numbers into it,
and cycles through this ten times — try
going into graphics and typing A to
confirm that 65368 is just the same as
USR 'A’. A short routine like this is
easily incorporated in a game, but
there are more systematic ways of
handling UDGs:

5 LET P=167

10 FOR N=0@ TO 167

20 POKE USR “A"+N,PEEK
(15880+P)

30 LET P=P-1

40 NEXT N

This is simply a loop that counts
through N and P, so that when N is 0
Pis 167, down to N being 167 and P
being 0. In line 20 we're POKEing into
the 168 locations (21 user-defined
graphics times 8 locations). Now the
first address of the Spectrum's
character A in ROM is 15880, and as
these are organised on exactly the

User-defined graphics

same basis as the user-defined
graphics character set, 15880 plus 167
gives you the last address of the
character U. So we're PEEKing
backwards from there, and POKEing
forward into the UDG set, leaving us
with an inverted and backward
character set!

If we'd performed this operation on
the UDG set, incidentally, we'd have
found the first half of the UDG
character set was a mirror image of the
second half.

But with what we have above you
don't actually get a complete character
set. Just to show there's very little real

difference between UDG memory and
other areas of memory, try this one:

1@ CLEAR 59999

20 FOR N=0 TO 1024

30 POKE 60000+N,PEEK
(15360+N)

40 NEXT N

50 POKE 23607 ,234

6@ POKE 23606,96

Run this and, provided you've typed it
in right, you'll see no difference at all.
Those of you who can see a real and
unpleasant difference (your character
set is corrupted) should type:

82
User-defined graphics

3
]
\........———g

e

o

POKE 23606,0:POKE 23687 ,60

and check your listing again. What
we're doing here Is reserving space
above 59999 for a complete copy of the
Spectrum's character set. Line 30
copies the dot patterns from 15360 on
into the locations from 60000 on.

Now the important lines are 50 and
60, which alter the address of the
system variable CHARS, which keeps
track of where the Spectrum looks to
find its character set. As the address of
the character set is clearly going to be
larger than 255, the largest number

. you can have in one location, it clearly
needs two locations. You calculate
CHARS like this;

PRINT PEEK 23606+256*PEEK
23607

Working backwards from this, as we
want to point CHARS at 60000 (we
could put it anywhere else, within
reason) we divide 60000 by 256, giving
us 234.375, so the number in 23607

must be 234. Then multiply 234 by 256,
take that away from 60000 and it gives
us 96, which is the number to go into
23606.

Now to show you one way to use this,
add these lines:

60 FOR N=96 TO 120
70 POKE 23606 ,N

80 LIST

9@ NEXT N

100 POKE 23606,96

When we said the character set was
corrupted, that wasn't strictly true. The
lines we've added here are simply
shifting the pointer to the character set
one address at a time, so with each
successive pass through the second
loop the character set is shifting
upwards, so that eventually it becomes
totally unintelligible.

You could use this as a security
method, but you can make listings just
as unreadable by POKEing odd
numbers into 23606 and 23607 without
moving the character set at all.

User-defined graphics

& Adding character

Using the method above you can see it
would be quite easy to get the
Spectrum to use an alternative
character set, but you'd still have to sit
down with graph paper and draw up
your character set. Or would you?

In fact, you wouldn't. Unless you're
talking about Chinese or Arabic,
character sets usually have quite a lot

in common - logically enough,
because if they didn't you wouldn't be
able to read them. So if you think about
what you want to do it's often possible
to perform a systematic operation on
the character set that will result in a
new typeface at the cost of very little
typing.

TRY THIS

Consider the problem of producing an
italic face. This is essentially a
typeface that slopes, so by moving the
top rows of the character's dot pattern
to one side, and the bottom rows to the
other, you could produce a fair
simulation of italics:

20 CLEAR 64529

30 FOR T=32 TO 127

40 FOR S=0 TO 8

50 LET A=PEEK(15360+
(T%8)+S)

60 IF S>=@ AND S<4 THEN
LET A=A/2

70 IF S=6 OR S=7 THEN
LET A=A%*2

80 LET A=A—((A>255)%*256)

90 POKE 64273+(T*8)+S,A

100 NEXT S

110 NEXT T

120 GOsSuUB

140 PRINT

150 GOSuB

160 PRINT “ITALICS ”:GOSUB

1000: PRINT “LOOK

LIKE. ”: GOSUB 2000:

PRINT “OK!”

FOR T=0 T0 5

1000
“THIS IS WHAT ”;
2000

170

180 GOSUB 100@:PRINT
“ABCDEFGHIJKLM”
GOSUB 2000:
PRINT“ABCDEFGHIJKLM”
NEXT T

STOP

POKE 23606,0:
23607 ,60
RETURN

POKE 23606,64273—256%
INT(64273/256)

POKE 23607 ,INT(64273/
256)

2020 RETURN

It should be fairly easy for you to work
out what's going on here. Address
15360 in line 50 is the start of the
character set, but the part we're really
interested in begins a little further on. |
can't visualise what an italic space
looks like either, but we'll let that pass!

Line 60 uses S to check to see if
we're on the top four pixel lines of the
dot pattern, and if so shifts them one
pixel to the right by dividing the
number by two. The fifth and sixth
lines are left as they are, and the
seventh and eighth lines are multiplied
by two, shifting them one to the left.

190

200
210
1000 POKE
1010
2000

2010

84

User-defined graphics

Line 80 checks to see if the resulting what the set looks like, and the

number is too big to fit in an address, subroutines at 1000 and 2000
and if so lops off 256. respectively switch the character set
And, apart from POKEing the new between the normal one and the italic

set in at line 90, that's it. The rest of the one. The program takes a while to
program gives you a demonstration of produce results.

If you construct your programs from blocks, but the Spectrum has other
user-defined graphics alone you're facilities that you can take advantage
really missing out on something. of. By messing around with the
Certainly it's easy to build the screens scrolling, for example, you can

for programs out of user-defined produce interesting effects easily.

TRY THIS

As you know the Spectrum's screen is the routines singly if you wish:
organised in rather a complex way, so

manipulating it can be difficult. The 1@ CLEAR 59999

following program, however, 20 GOsuB 500

incorporates two machine code 30 LET X=10: LET Z=16

routines that will scroll the top and 40 FOR N=60000 TO 60033

bottom thirds of the screen. It's been 50 READ E

organised that way to allow you to use 8{)
85

User-defined graphics

60
70
100
110

120

130
140
150
160
170
180

190
200

POKE N,E

NEXT N

LET Y=4@: LET YY=120
LET D=INT (RND*2): LET
PP=(1 AND D=1)+(—1
AND D=0)

LET C=INT (RND*2): LET
P=(1 AND C=1)+(—1 AND
c=0)

IF Y=0 THEN LET P=1
IF Y=4@ THEN LET P=—1
IF YY=174 THEN LET
PP=—1

IF YY=115 THEN LET
PP=1

LET Y=Y+P: LET
YY=YY+PP

PLOT @,Y: DRAW @,—Y:
PLOT @,YY: DRAW
0,175-YY

PRINT AT X,Z;“ "

IF INKEY$="1" THEN LET

210
220
230

240
499
500
510
520
530
540

550
680

690

86
User-defined graphics

X=X—1

IF INKEY$=“q” THEN LET
X=X+1

PRINT AT X,Z;“A”:
REM UDG

LET B=USR 60000:
A=USR 60017

GO TO 110

REM SET UP UDG
FOR N=0 TO 7
READ E

POKE USR “A"+N,E
NEXT N

DATA 7,30,124,255,124,
30,7,0

RETURN

DATA 33,0,80,62,63,6,
32,183,203,30,35,16,
251,61,32,245,201

DATA 33,0,64,62,63,6,
32,183,203,30,35,16,
251,61,32,245,201

LET

The crucial elements of this
program are in lines 680 and 690. These
are basically the same routine except
for the third piece of data, which
governs the screen address the
routine starts from. In the case of the
first routine the number is 680, and if
you use the same method we used
to deal with CHARS 1.e. multiply it by
256 and add the number in the address
before it, we get 20480, which is the
start address of the bottom third of the
screen. The same operation
performed on the routine in line 690
gives us 16384, the start address of the
top third of the screen.

From this you'll see what we're
doing is scrolling the top and the
bottom of the screen independently,

leaving your UDG spaceship in the
centre. We're using PLOT and DRAW
to generate the scenery, which slows it
up somewhat, but you could speed it
up a little by not filling in the scenery,
and you could add a routine check to
see If you'd hit the cave walls. This
would just involve making sure the
ATTRibutes of X,Z equalled a space
before you printed the ship on it.

Should you wish to pull the scrolling
routines out for use in other games,
you'll find the top part is called by LET
B=USR 60000 and the bottom part by
LET A=USR 60017. You could also use
RANDOMIZE USR instead of LET
A=USR, as it's just a matter of locking
the Spectrum into the relevant routine
at regular intervals.

87
User-defined graphics

s (U110 C 1S e ——

In this chapter you should have
learned:

[0 How USR ‘A’ etc is just shorthand for
one of the Spectrum’'s memory
locations, and how dot patterns are
stored in the UDG area.

[J How to manipulate the shape of a
character on the screen by
performing arithmetical operations
on the number stored in memory.

[0 How to page in completely new
character sets by varying the value
stored in system variable CHARS,
producing just about as many user-
defined graphics as you're ever
likely to want.

[0 How to use scrolling routines mixed
with UDGs to produce simple
games.

88
User-defined graphics

Animation is basically a way to make
pictures move on the screen. There
are various levels at which this can be
done, the simplest being to have a
Basic routine that prints a character
onto the screen, rubs it out, and then
prints it at the next position like this:

10
20
30
40
50
60

PRINT AT 1@,0;M’;

FOR T=0 TO 30

PRINT AT 10,T;~ ”;
PRINT AT 10,T+1;"M’;
NEXT T

FOR T=31 TO @ STEP -1

7@ PRINT AT 10,7;” 7;
8@ PRINT AT 10,T-1;M”
90 NEXT T
1080 GOTO 10

After typing in this program, you
should have an ‘M’ whizzing back and
forth across the screen. The problem
with this approach is, as you will have
noticed, that it is jerky, and it flickers a
lot. The general idea, however, is the
basis for sprites and movement of any
single figure.

90

Sprites and animation

To get an idea of how sprites actually
work, we'll have a quick overview of
how the Spectrum's screen works.

The picture is made up from a series
of horizontal lines, each of which is
again split into a number of dots. These
lines and dots give the resolution of the
screen in pixels. The Spectrum's
screen, as with a number of other
micros, 1s also split into two main
sections, the border and the main
screen. As the screen is drawn, at 50
times a second, the television's
scanning beam is effectively turned on
and off depending on its position and
the contents of the video RAM. The
hardware that is responsible for doing
all of the screen data handling is the
famous Sinclair ULA.

During the first part of the scan, this
just sends out a single colour signal
that forms the top part of the border.
As soon as the printable section of the
screen is reached, the ULA first sends
out the border signal and then scans
the video RAM and, if a bit contains a
one, a dot is sent out; if it's a zero, then
a space 1s sent. After the picture line
has been drawn, the ULA resumes
drawing the border until the lower
border is reached, when it just sends
out a single colour.

_ Aswell as scanning the picture part
of the RAM, from 16384 to 22528, the
ULA also scans the attribute section,
from 22528 to 23296, to form the colours
on the screen. The colour signals
cause the picture information to be
sent to the different colour guns in the
TV and, if you have a colour television,
this creates a pretty colour picture.

When you move characters around
the screen, a lot of the flickering is

ESNY.
O = =Tl 30

o d n 1 I WRS (Rl]

caused by interference between the
screen scan and writing into the
screen RAM. Since the object has to
be erased and then re-drawn to make
it move, the ULA scan will probably
pick up the picture halfway through
either the erase part of the program, or
somewhere in the re-draw section,
giving rise to severe ghosting and
flickering, and generally making quite
a mess of things.

Fortunately, all is not lost, as there
are times when the ULA is not actually
scanning the video RAM, e.g. when it
1s drawing the border, or when the
beam is flying back' to the top of the
picture. These times are when all the
redrawing should be done.

To get back to sprites, the following
section describes a set of machine
code routines that allow you to place
characters anywhere on the screen (at
any of 0-255, 0-175 horizontal, vertical
positions).

The following program is used to
load the sprite machine code into
memory and then store it on either
microdrive or tape.

10 REM LOADER PROGRAM FOR
SPRITES

FOR T=30022 TO 30176
READ A:POKE T,A

NEXT T

SAVE *“M’;1;“SPRT.BIN”
CODE 30000,175

STOP

DATA 205,129,117,205,
119,117,201,205,170

DATA 117,201,42,68,117,1,
56,117,22,8,126,2

DATA 3,35,21,32,249,201,
205,170,117 3

9l

Sprites and animation

130 DATA 58,66,117,50,64,
117,58,67,117,50,65
DATA 117,205,129,117,
205,119,117,201,205
DATA 81,117,33,56,117,
205,173,117,201,33
DATA 48,117,237,75,64,
117,22,8,30,8

DATA 197,213,229,205,
206,34 ,205,213,45

DATA 225,209,193,203,
47,203,22,12,29

DATA 32,236,35,5,121,
214,8,79,21,32

DATA 225,201,33,48,117,
237,75,64,117

DATA 22,8,30,8,203,38,
218,191

DATA 117,62,12,50,145,
92,197,213,229

DATA 205,229,34,225,
209,193,62,0,50

DATA 145,92,12,29,32,
228,121,214,8,79

DATA 35,5,21,194,179,
117,201

260 DATA 80,11,114,99,101

This machine code allows any
character to be moved around the
screen as a sprite. Before the sprite is
moved to a particular position on the
screen, the data at that position is
stored. After the sprite has moved on,
this data is replaced so that the
background does not get messed up
by any sprite movements.

To use the program, the following
addresses need to be noted:

30020 (ADL) holds the low byte of the
address of the character to be used as
the sprite.

30021 (ADH) holds the high byte of the
address.

30016 (X) holds the start horizontal
position of the sprite.

140
150
160
170
180
190
200
210
220
230
240
250

30017 (Y) holds the start vertical
position of the sprite.

30018 (X1) holds the horizontal position
of the coordinate to which the sprite is
to be moved with MSPR.

30019 (Y1) holds the vertical position to
be moved to.

30022 (SPON) Executing at this
address turns the sprite on.

30029 (SPOF) This one turns the sprite
off.

30049 (MSPR) This moves the sprite
from X, Y to X1,Y1 and after it has
finished X becomes X1, Y becomes Y 1.

With this information, you have
everything you need to be able to shift
the sprite around the screen. Note that
since the position specified by X and Y
1s a pixel position, the character can
be placed anywhere on the screen.

Here is a demonstration:

10 GOSUB 1000:REM LOAD
MACHINE CODE

20 LET X=30016

30 LET Y=30017

40 LET X1=30018

50 LET Y1=30019

60 LET CL=30020

70 LET CH=30021

80 LET SPON=30022

90 LET SPOF=30029

LET MSPR=30049

LET DX=1:LET DY=1

LET SX=1@:LET SY=10

POKE CH,255:POKE CL,88

POKE X,SX:POKE Y,SY

RANDOMIZE USR SPON

LET SX=SX+DX:LET

SY=SY+DY

IF SX>240 OR SX<10

THEN LET DX=-DX

IF SY>160 OR SY<10

THEN LET DY=-DY

POKE X1,SX:POKE Y1,SY

RANDOMIZE USR MSPR

190
200

Sprites and animation

210
1000

GOTO 160

LOAD *“M";1;“SPRT.
BIN’CODE

1010 RETURN

Just to prove that the background
will not be erased, add the following
line:

185 FOR T=0 TO 600:

PRINT“B”; :NEXT T

The other use for the sprite routines
is to allow printing anywhere on the
screen so try the following:

10 GOSUB 1000:REM LOAD
MACHINE CODE

20 LET X=30016: LET Y=
30017: LET X1=30018:
LET Y1=30019: LET

CL=30020: LET CH=30021:

LET SPON=30022: LET
LET SPOF=30829: LET
MSPR=30049
110 FOR T=65 TO 85
120 POKE CL,(USR
~ Fullscreenanima
7 0

Another type of animation is that used
in cartoons, consisting of a sequence of
snapshots of a figure in a set of
positions each of which is slightly
moved on from the previous one. On
the Spectrum this can be achieved by
drawing the first snapshot onto the
screen and saving the whole screen
into memory. The next shot is then
drawn, and the next, and the next.

All of the screens are saved into
memory as a series that can be loaded
to the video RAM in sequence. There
are two main drawbacks to doing this,
the first being the amount of memory
that each screen takes up (about 6K).
The second drawback is that from

CHR$(T))—
256*INT(USR CHRS$(T)/
256)

POKE CH,INT(USR
CHR$(T)/256)

POKE X,FN R(200)+1@
POKE Y,FN R(100)+10
RANDOMIZE USR SPON
NEXT T

DEF FN R(X)=
INT(RND*X)—1

STOP
LOAD*“M”;1;“SPRT.
BIN” CODE

101@ RETURN

By altering the address poked into
CH and CL to point to the character
ROM, found by adding the CODE of
the character to:

(33%8)+256+PEEK(23606)+256*
PEEK(23607)

130

140
150
160
170
180

999
1000

you can display any of the printable
characters anywhere.
NRGPE R aa el
amount of time to transfer the data.

Fortunately, the speed at which this
can be done can be increased
dramatically by using a machine code
routine. The Z80 microprocessor at the
heart of the Spectrum has a special
command for copying sections of
memory around at high speed, so the
routine to copy the screens around is
nice and short.

If you try the following program, you
will see that images can be swapped
from screen to memory pretty quickly.

10 CLEAR 50000
20 LET SWAP=50000

20

Basic, it would take an appreciable 30 Gosus 200

93
Sprites and animation

EI LI CFENETT EAEAE AT N
e | | R) R
(7 6 o s v]
AN S S S

FOR T=@ TO 255 STEP 5 220
PLOT @,0 230
DRAW T,175 240
NEXT T

RANDOMIZE USR SWAP 250
CLS

FOR T=-255 TO @ STEP 5 260
PLOT 255,0

DRAW T,175 270
NEXT T

RANDOMIZE USR SWAP

GOTO 140

FOR T=SWAP TO SWAP+29

READ A:POKE T,A

NEXT T

RETURN

DATA 33,0,64,17,0,224,
1,0

DATA 27,126,245,26,119,
241,18,11

DATA 35,19,120,177,32,
243,177,32

DATA 243,201,107,101,
110,110

The first screen is drawn and then

swapped into memory, with

RANDOMIZE USR SWAP, which
happens to be empty. The next picture

94
Sprites and animation

1s then drawn and the two swapped
over,

A thing to note is that the routine is
relocatable, 1.e. it can be placed
anywhere in RAM simply by altering
the value of SWAP. You should,
however remember to change the
CLEAR statement. But, it is not the
fastest way of doing things and, as you
can see, 1t flickers.

A much better method is to use the
following suite of programs to store the
images in memory and then recall
them in sequence to the screen.

The first program loads the machine
code from a series of data statements
and then saves the appropriate section
of memory to tape or microdrive. Itis
reloaded later on using:

LOAD *“M’;1;“TRN.BIN”
CODE 65280

or for tape:
LOAD “TRN.BIN” CODE 65280

This machine code is used to copy a
section of memory whose address
must be put into addresses 65280 and
65281. The first holds the low byte of
the address, obtained from:

LO.ADDR=ADDR—256*
INTCADDR/256)

The location, 65281, holds the high
byte of the address, found by:

" HI.ADDR=INT(ADDR/256)

Once these two numbers have been
entered, the machine code program
knows where the screen data is to be
moved from and, using RANDOMIZE
USR 65282, executes the code, moving
that portion of memory to the screen.
Note that the attribute memory is not
used, allowing the routine to work that
little bit faster.

Loader program for animation.

9 REM LOAD THE MACHINE
CODE, AND SAVE AS
TRN.BIN THIS IS USED TO
TRANSFER MEMORY TO
SCREEN.

10 FOR T=65280 TO 65295

20 READ A:POKE T,A

30 NEXT T

40 SAVE *“M’;1;“TRN.BIN’
CODE 65280,15

50 DATA 192,165,42,0,255,17,
0,64,1,0

60 DATA 24,237,176,201,80,
11,114,99,101

The next program demonstrates
how each part of the amimation is
formed and copied into memory.
There i1s room in memory for a
maximum of about five to six pictures,
depending upon the length of the
program used to draw them. This
program does take quite a long time to
copy the screen from one point to
another, and demonstrates the
amazing speed of Z80 machine code in
comparison to Basic. The copying can
be done in machine code with a very
similar routine to that used to call up
the pictures:

ORG 65280

start DEFW @ :Set aside
some memory space for the address
to be moved to.

LD HL,16384 :Put the screen
address into the HL registers.

LD DE,(start) :Loadthe DE
registers with the address of the
memory location to be moved to.

LD BC,6144 :Load BC with the
length of the screen 6144 bytes.

95

Sprites and animation

LDIR :This 1s the instruction
that performs the trick of copying
the memory all in one go, using the
HL, DE and BC registers.

RET :Return to Basic

Don't worry too much if you don't

120 POKE 65281,INT(AD/256)
130 RANDOMIZE USR 65282

140

5
200

RETURN

and add the following lines to it.

GOSuB 200
FOR T=65280 TO 65295

understand any of this. All you really 210 READ A:POKE T,A

need to know i1s how to use it and the 220 NEXT T

numbers of the assembled code. 230 RETURN
To use it, just replace the subroutine 240 DATA 0,0,33,8,64,237,

in the design program opposite, 91,0,255,1,0

starting at line 100, with: 250 DATA 24,237,176,201,74,
100 LET AD=30000+(S%6192) 111,104,110
110 POKE 65280 ,AD—256% This now does the whole thing a great

INT(AD/256) deal faster.

108 |

96

Sprites and animation

Design program

1@ FOR T=1@0 TO 5@ STEP 1@ machine code routine loaded and

15 LET S=(T/1@)-1 saved previously.
20 CLS 10 CLEAR 30000
30 CIRCLE 100,100,T:
] 20 GOSUB 100
CIRCLE 150,90,T/3:
CIRCLE 140,110,T/2 50 FOR T=30000 TO
. Sl DG 30000+ (4%6192) STEP
40 PRINT“SCREEN NO. ”;S:
PAUSE 100 6192
40 POKE 65280,T—256*
58 GOSUB 100
T POKE INT(T/256)
T SA * - B ’
@ SAVE »';1;“RAIN" CODE 60 RANDOMIZE USR 65282
30000,35280
38 avos 70 NEXT T
99 REM READ SCREEN DATA 80 GOTO 30
ST NCHoRY 99 REM LOAD MACHINE CODE
100 FOR D=0 TO 6144 16 e i
110 POKE 30000+D+(61924S), G CODE
105 LOAD*“M’; 1;“TRN.BIN”
PEEK(16384+D)
(58 "XENT B CODE 65280
LB, 110 LOAD*“M”; 1;“RAIN” CODE
30000
120 RETURN

The next thing to be done is to
animate the screens. This means Once you have run this, you should be
loading to the main screen RAM with able to work out why the picture file is
the picture data in sequence, using the called 'RAIN',

| S ESEEEEENNE N jmm
B L R 1 53 O A 1 m . el
I (m| ! ﬁ IF{ ‘H:HI' H 1 H
gt H SERRSRS 38 1 HO
1

t4 { Il BE 1

II%‘[|
i3]
1
It
it
|
'
1

Ll

1] il e i
] 81 [1 O 1
I - 1T

se la e - L 1

A
(R |

.

-

1|

-
-
L |
o

- sees —au
b=

TR T = ! 8
T it il
e TR, TRNT". SITIR I E AT IS IR TS ERT™ TIEITEITN

R L g T T T R

-s
1 L | I}
11 11 1 11
Ht: HH T TTTTTT '-rrEHr 1T H ' {

L4

97
Sprites and animation

Projects

[0 Try setting up a more detailed full
screen animation sequence.,

[0 Alter the Basic part of the sprite
routine to allow more than one
sprite to be used.

[0 Change the full screen animation
programs to include the attribute
RAM for full colour.

[0 Incorporate the full screen
animation method into the
adventure program described in
chapter 3 to allow pictures of the
locations to be shown instead of just
descriptions.

[0 See if you can encode the screen
data used in full screen animation to
allow more screens to be used.
Note that a great deal of the data in
each picture is the same.

98
Sprites and animation

LI €l |r] .

99

P

A

Every now and again in this book you'll
have run into areas where you've been
told 'you don't really need to
understand this right now'. Quite often
this will have referred to a stack of
numbers held in DATA statements
that, when you POKE them into
memory, seem to do incredible things,
and do them a lot faster than Basic
does.

You'll probably have also seen the
same thing in magazines, and here
you'll usually only be told it's a
‘machine code program’; if you want to
know more about machine code this
1sn't really very helpful. Clearly these
numbers mean something, but what?

To get a grasp of this you really have
to take a step back and think of what
the Spectrum actually is, and how its
memory is structured. In essence, it'sa
series of switches that can be either on

or off, and these switches interact with
one another to store numbers. The
Spectrum doesn't actually store
anything but numbers, so when it's
‘storing’ text, graphics and so on it's
actually a ntimeric representation of
whatever you think it's storing.

Therefore, whenever you type in a
Basic command the Spectrum's Basic
interpreter has to translate the
command before the machine can act
on it, and it acts on it by turning that
command into a number, or a series of
numbers, then executing it. In essence
this is why Basic is slow compared to
machine code.

What you're doing with the DATA
statements of decimal numbers is
talking to the Spectrum in the
language it understands, and the
numbers in these statements are
actually a series of commands, forming

100
Memory in detail

a machine code program. You've
already learned that machine code
should be stored above RAMtop, and
therefore you should lower RAMtop to
provide enough space to hold your
programs (all you need do is lower it
by the number of DATA statements
you have), and that you execute the
machine code with the call
RANDOMIZE USR (address), where
address is the first address of the
program, ie the first location above the
new RAMtop.

Why RANDOMIZE USR? It's
common for micros to have an EXEC
or CALL command for running
machine code, and it's fairly obvious
from the command what this does. It's
less so in the case of the Spectrum, but
once you've grasped it it's also pretty
Clear.

If you check with the manual you'll
find RANDOMIZE is used as a pointer,
and by adding USR you're telling the
Spectrum you wish to point at a
memory address. The Spectrum then
jumps to that address, reads your first
command and you're off.

Hexplanation time

Don't panic if you still reckon the
numbers are meaningless, because

“broadly speaking you're right.
Because computers think in terms of
binary switches, although they
understand decimal numbers as
instructions they're not organised in a
particularly logical way. However, if
you were to translate those numbers
into hexadecimal, i.e. base 16, you'd
start to see some sort of system behind
them.

Assembler

Even if you manage to master your hex
times tables you'll have a
communications problem. You'll still
be faced with the problem of thinking
in English and trying to communicate
directly with something that thinks in
numbers. This is basically what an
assembler is all about. An assembler is
a program that uses easily
remembered mnemonics for you to
type in, and communicates with the
computer in the numbers it
understands. Note however that there
1s a fundamental difference between
an assembler and the Basic language.
In the case of Basic you're giving the
computer a series of instructions that it
stores, then interprets one at a time,
whereas in assembler you're still
POKEing the information directly into
memory, even though it doesn't always
feel like that's what you're doing. It's no
part of this book's function to explain
machine code or assembler, but it's
important that you understand what
they are, if only for future reference.

TRY THIS

Sound is a good example of what you
can do in machine code by addressing
the Spectrum's memory directly. If
you've experimented with the sound
facilities of the Spectrum you'll
probably be acutely disappointed,
particularly if you've had a chance to
hear what other machines can
produce.

The most important problem with
the Spectrum's sound is the fact that all
1ts operations are controlled by its Z80

Memory In detail

processor. This means that sound is 60 DATA 58,72,92,31,31,31,

just one of the other operations, 230,7,14,255

whereas on many other micros it is 70 DATA 38,0,68,203,231,

controlled by a separate processor, 211,254 ,16,254 ,68

and the end result is that, when you're 8@ DATA 203,167,211,254,16,

programming in Basic, everything else 254,203 ,231,211,254

stops while the Spectrum BEEPs. 90 DATA 16,254,203,167,211,
In machine code, however, you can 254,16 ,254,36,13

get around this. You can use interrupts 100 DATA 32,226,201
to produce noise while the program is 11@ DATA 58,72,92,31,31,31,

apparently still executing — although in 230,7 ,225,229

fact it's stopping very briefly at regular 120 DATA 95,14,0,22,15,126,
intervals, and you can also produce 2308,16,131,211

versions of the sort of sounds you'd 130 DATA 254,65,16,254,35,
more normally associate with arcade 21,32,243,13,32

games, like this: 140 DATA 238,201

150 FOR N=1 TO 3:
RANDOMIZE USR 65206:
RANDOMIZE USR 65247:
NEXT N

10 CLEAR 65205

20 FOR X=65206 TO 65280
30 READ A

40 POKE X,A

50 NEXT X

102
Memory in detail

You'll have got the idea about
programs like this already. You're
storing a routine - or in this case two
routines — above RAMtop, and calling
it with a RANDOMIZE USR call to the
address it starts from. In this case
we've got two machine code programs
that will produce the sound of a laser
burst and an explosion, in the case of
the latter flashing the border to make
the point.

Now if you count your way through
the DATA statements you'll find the
first routine, which ends at 65246,
finishes at the end of line 100. The
second ends at the end of 140, and you
should now be able to see a similarity
- both end with 201, and if you check
that in the Z80 chip instruction set you'll
find it means RET, or return. You'll find
there are other numbers that repeat,
and if you're going to get involved in
machine code you'll become familiar
with them, but at the moment it's just a
matter of your being able to see a

pattern.

In the case of the program here you
should be able to detect a difference
between what you can produce from
Basic and what you get from machine
code. In Basic you can use a
FOR. . .NEXT loop to produce a series
of notes, but they're separate notes -
you can't produce anything like a
smooth graduation. But machine code
1s much more flexible.

The Spectrum's BEEP is basically
just a click. The speaker is connected
to one of the output ports of the Z80,
and whenever the speaker bit D4 is set
a click is produced. The pitch of the
note you hear is determined by the
number of times per second D4
switches on and off. So instead of
varying pitch and duration through
Basic it's just a matter of varying the
rate of clicking through machine code,
and this produces a smoother variation
in note,

The diagram overleaf shows you how
the Spectrum's memory is organised,
and how the decimal numbers of the
locations relate to the hexadecimal
versions. In the interests of logic we'll
deal with hex numbering here. The
memory is best viewed as a long line
of numbered boxes going from 0000h
to FFFFh (7FFFh in the 16K Spectrum).
Each of these boxes contains one 8-bit
byte, known to mere mortals as an
elght character binary number.

The memory is split up into Read
Only Memory, the ROM, and Random
Access Memory (RAM). You can
change what's in RAM, but you can't

change the ROM - you can, however
use some of its built-in routines as
we've shown you in the chapter on
system variables.

The ROM runs from 0000h to 3FFFh
— 1t 1s basically a set of programs
written in Z80 machine language, and
is arguably the one key feature that
makes the Spectrum a Spectrum
rather than, say, a Memotech. If you do
get a thorough grounding in assembly
language you'll find that various parts
of the programs in the ROM can
actually be used as subroutines in your
OWN programs.

If you want to mess around seriously

103

Memory in detail

with these, you'll need a disassembled
listing of the Spectrum's ROM. A
number of books containing these
have been published, and, while
they're not exactly easy to understand,
a bit of application will pay dividends.

Just above the ROM in the memory
you run into the fixed RAM. This is an
area of RAM, within which fixed
addresses are used by the ROM for
things like the display and attributes
files, which we covered in the chapter
on colour, As far as we're concerned,
the other important area here is the
one holding the addresses used by the
ROM to operate the Spectrum - these
are the system variables.

Once you're through this section you
get to the floating RAM, where the
sections have no fixed length, although
ROM keeps track of where they are by
holding their addresses in the system
variables. These sections include
channel information and the
Microdrive maps, and are followed by
storage areas for Basic programs and
their variables.

After this there are sections dealing

with editing, temporary workspace
and the calculator stack, and these are
associlated with the operation of Basic
programs. The spare space above this
varies in size depending on the size of
the Basic program and the amount of
variables it uses, but it can be used for
storing data or for machine code
programs.

Beyond this, and immediately below
RAMtop, we have the machine stack
and the GOSUB stack. Once you're out
of this territory and beyond RAMtop
you've left the area of memory which
can be reset by NEW, so by lowering
RAMtop with a CLEAR you're
providing an area of memory that is
protected against being overwritten
by a totally Basic operation.
Incidentally, the user-defined graphics
are normally just above RAMtop,
which is why you can't reset them with
NEW. The system variable UDG
normally points at the first address of
the user-defined graphics, but you can
alter this to point somewhere else if
necessary.

P_RAMT FFFF 65536 T
RAMtop FF57 =
e
)
=
I
Spare
STKEND v

104

Memory in detail

Calculator stack
—— STKBOT

--- WORKSP

Command or program line being edited
---------------------------- E_LINE

Variables

Basic program

5CB6

5C00

5B00

5800

4000

3D00

2C88

0000

23134

23552

23296

22528

16384

0000

NV buneold

>4

44— N —P4— AV PaX14

105
Memory in detaill

Checklist E—————

In this chapter you should have
learned:

[0 How the Spectrum's memory is laid
out.

[0 How you can use POKE or an
assembler to communicate with
the memory, and to store programs
init.

[0 How to call machine code routines
with RANDOMIZE USR.

106
Memory in detall

Computers are being used more and
more to play music these days. The
methods, and results, are many and
varied. From semi-random notes to
amazing gizmos, such as the Fairlight
which can be used to record various
sounds digitally, such as breaking
glass, or barking dogs, and then play
them back at different speeds to
enable tunes to be played.

One of the advantages of music 1s
that it can be represented in a number
of different ways. All of these are
numerically related, making them easy
for a computer to handle. The
difference between the notes in
different octaves is related by
frequency, 1.e. the C above middle C is
exactly twice the frequency. So, to
move a note up an octave, simply
multiply by two.

An octave is defined as being the
interval between one frequency and
its double, split into eight. In fact it is
split into 13 semitones, the highest
being twice the frequency of the first.

Unfortunately, this is where things

begin to get a little more complex
since the Western ear isused to a
major scale of eight notes and, of
course, there are thirteen. For
example, listen to the following two
programs:

10
20
30

FOR T=0 TO 12
BEEP .5,T
NEXT T

FOR T=0 T0 7

READ A

BEEP .5,A

NEXT T

DATA 0,2,4,5,7,9,11,12

The first plays all the semitones in the
scale, the second plays only the major
notes, that is, no sharps or flats.

To get around this, all keyboard
Instruments, such as pianos,
harpsichords, and most synthesisers,
have their keyboards split into two
sections, the black notes, and the
white notes. The former contain all the
sharps and flats but, as we shall see
later, this is relative to the key.

=]

ZX Spectrum

SR

(

BLUE RED MAGENTA GREEN [~ AN

F LOW

WH TE

EDIT

CAPS LOCK

TRUE VIDEQO INV VIDEO

GRAPHICS

L% [22] [39] (771 7 (57

9 18_'1

DELETE

0]

DEF FN

SIN

FN

cos

LINE OPEN # CLOSE #

TAN AND

MOVE ERASE POINT

STRS CHRS CODE

FORMAT

PEEK

Q &
PLOT,
EAl'

ASN

R(:&’..)Rt

D TER) G HEN
DM GOTO) GOSUB

VERIFY MERGE

DATA EN

ui I I

out

VAL LEN

USR

L PRINT LLIST

lK K

| LET—I

CIRCLE VALS SCREENS

IN KEYS

ATTR

BEEP

FLASH

CAPS SYMBOL
SHIFT copv c EAR LLb sonosn NEXT PAUSE SHFT

BRIGHT INVERSE

108
Sound

Poxel uw.l

The intervals between E and F and B
and C are taken to be semitones
whereas the other intervals are full
tones. The upshot of all this is the ease
with which it is possible to play simple
tunes in the key of C (no black notes).
Most of the following programs will use
only the major scale although it needn't
be the key of C. Simply adding an
offset to the value of the notes will
change the key to be anything you
wish. For instance, the following
program, a development of the
previous, demonstrates this.

1@ FOR S=0 T0 12

20 FOR T=@ TO 7

30 READ A

40 BEEP .1,A+S

50 NEXT T

60 RESTORE

70 NEXT S

88 DATA @,2,4,5,7,9,11,12

The Spectrum's typewriter keyboard
can be set up to imitate a piano
keyboard using the letters
QWERTY U Ifor the white
notes,and 2 3 5 6 7 for the black. The
layout will look like this:

(s)(e) (7]
QWEE@MMO]

fo give the notes

C# D#
Ci Dl E E

F# Ab Bb
G A B C

A rather useful subroutine is one that
decodes the keys and produces the
appropriate note values. This is done

by reading the keyboard with INKEY$
and then using the equality operator to
pick/filter out the correct value. The
note values are kept in an array for
convenience, allowing them to be
altered at will, without having to edit a
great long Basic line. The routine is:

100 LET A$=INKEY$

110 IF A$="" THEN GOTO 100

115 LET N=((A$="Q")*S(1))+
((A$="2")%S(2))+((A%$=
“W)I*xS(3))+((A$="3")*
S(4))+((A$="E")*S
(5))+((A$="R")*S(6))
+((A$="5")*S(7))+
((A$="T")*S(8))+
((A$="6")*S(9))
+((A$="Y")*S(10))+
((AS="7")*S(11))+
((AS="U")*S(12))+
((A$="1")%*S(13))

120 BEEP .1,N

130 GOTO 100

To set up the array, this next routine
needs to be executed first.

1000 DIM S(13)

121@ FOR T=1 TO 13

1020 READ S(T)

1030 NEXT T

1040 RETURN

1058 DATA -3,-2,-1,0,1,2,3,
4,5,6,7,8,9

The first line of the program should be:
10 LET A$="": GOSUB 1000

and you have a musical keyboard.
There are a number of drawbacks to
this program, not least its lack of
flexibility.
One problem is that the notes repeat
far too quickly. A solution to thisis to
alter the following lines:

100 LET S$=AS$:LET
A$=INKEY$

109

Sound

106 IF S$=A$ THEN GOTO
100
1005 LET A$=" "

which gets rid of the repeats
altogether.

One of the other main problems with
the Spectrum's sound command is that,
once it starts, it can't be stopped, so
make sure the note length in line 120 is
not too long.

From here, a number of features can
be added to make the program much
more useful and versatile.

The first of these is a vibrato effect to
make the sound a little more
interesting. It would also be nice if this
effect could be turned on and off. To
get the vibrato, the beep frequency
needs to be altered like this:

10 BEEP .01,0
20 BEEP .01,.7
30 GOTO 10

Using this idea, the following
subroutine and lines can be added to
get vibrato. It also offers a way around
the problem of the note not being
interrupted by another keypress.
Since the actual BEEP is quite short, it
1s possible to detect another keypress
halfway through and thus abort the
current note for the next.

Another feature is the ability to tune
the keyboard to any key or octave
desired, and since there are now
going to be quite a few functions, it's
time to start defining some sort of
menu system. Inserting the following
lines starts us on our way.

10
20

106
107
120
160
999

1005
1006

1999
2000
2004

2005
2010
2020
2030

2999
3000
3010
3020
3030
3040
3050

3060
3070
3090
3100
3110
3120

3200
3210

3220

LET A$="":
GOTO 3000
REM PLAY
IF S$=A$ THEN GOTO 100
IF A$="K” THEN RETURN
GOSuB 2000

RETURN

REM SET UP VARIABLES
AND ARRAYS

LET A$=""

LET D=@:LET L=10:

LET 0=0

REM NEW BEEP ROUTINE
FOR T=0 TO L

IF INKEY$="" THEN LET
T=L:GOTO 2020
BEEP.@1,N+0
BEEP.@1,N+0+D

NEXT T

RETURN

REM MAIN MENU
CLS:PRINT” MAIN MENU”
PRINT

GOsSuB 1000

PRINT “Z...TUNE UP”
PRINT “X...TUNE DOWN”
PRINT “M...OCTAVE UP”
PRINT “N...OCTAVE
DOWN”

PRINT “B...LENGTHEN
NOTE”

PRINT “V...SHORTEN
NOTE”

PRINT “S...INCREASE

VIB DEPTH”

PRINT “D...DECREASE
VIB DEPTH”

PRINT “L...PLAY"
PRINT “K...MENU"
LET A$=INKEY$

IF A$="Z" THEN LET
0=0+.5:G0SUB 3500:
GOTO 3000

IF A$=“X" THEN LET
0=0—.5:G0SUB 3500:
GOTO 3000

111

3230

3240

3250

3260

3270

3280

3290

3300
3499
3500
3510
3520
3530
3599
3600
3610
3620

This program now allows tunes to be

IF A$="M" THEN LET
0=0+12:G0SUB 3500:
GOTO 3000

IF A$="N" THEN LET
0=0—12:G0SUB 3500:
GOTO 3000

IF A$=“B” THEN LET
L=L+1:GOSUB 3600:
GOTO 3000

IF A$="V" THEN LET
L=L—1:GOSUB 3600:
GOTO 3000

IF A$="S” THEN LET
D=D+.1:GOSUB 3600:
GOTO 3000

IF A$="D" THEN LET
D=D—.1:G0SUB 3600:
GOTO 3000

IF A$=“L" THEN
CLS:PRINT“ PLAY”:
GOSUB 100:GOTO 3000
GOTO 3200

REM PLAY SCALE

FOR N=@ TO 12
GOSUB 2000

NEXT N

RETURN

REM PLAY SINGLE NOTE
LET N=0

GOSUB 2000

RETURN

played on the Spectrum keyboard,
(use capital letters when you choose

from the menu). The next thing to do 1s

to allow them to be recorded and
played back. There is also the

opportunity here for allowing the notes

to be shown on the screen in their

proper place on the staff. The best way

to do this is to use user-defined
graphics like this:

4000
4005

Sound

RESTORE 4000
FOR T=@ TO 159

39

4010
4020
4100

READ A:POKE USR‘A"+T,A
NEXT T

DATA @,255,0,0,255,8,8,
255,8,8,255,8,8,255,
24,24

DATA @,255,0,8,255,8,8,
255,8,8,255,8,24,255,
24,0

DATA @,255,8,8,255,8,8,
255,8,8,255,24 24,255,
0,0

DATA @,255,8,8,255,8,8, .
255,8,24,255,24,0,255,
2,0

DATA 8,255,8,8,255,8,8,
255,24,24,255,0,0,255,
0,0

DATA @,255,0,0,255,0,
24,255,24,16,255,16,
16,255,16,16

DATA 0,255,0,0,255,24,
24,255,16,16,255,16,
16,255,16,16

DATA @,255,0,24,255,24,
16,255,16,16,255,16,
16,255,16,0

DATA @,255,24,24,255,

4110

4120

4130

4140

4145

4150

4160

n o)

4170

4180

16,16,255,16,16,255,16,
16,255,0,0
DATA 24,255,24,16,255,

(“E” AND N=1); (“G” AND
N=2); (“I” AND N=4);
(“K” AND N=6); (“M”" AND
N=8); (“0” AND N=10);

16,16,255,16,16,255,16,
0,255,0,0
4190 RETURN

Once these are in, they can be used
with the following subroutine.
Note that the characters in lines 4205
and 4210 are graphics characters

4210 PRINT AT M+1,G;(“B”
AND N=-3);(“D” AND
N=—1); (“F” AND N=1);
(“H” AND N=2); (“J” AND
N=4); (“L” AND N=6);
(“N” AND N=8); (“P”
AND N=10);

(UDGs). 4220 RETURN
4200 LET G=G+1:1F G>30 To use this we must also add the
THEN LET M=M+3: following lines.
LET G=0
— A T =(7
4201 IF M>21 THEN LET 1007 LET M=2:LET G=0
125 GOSUB 4200
M=2:LET G=0 11 GOSUB 4000
4205 PRINT AT M,G; (“A” AND
N==3); (“C” AND N=-1); and change line 3290
112

Sound

3290 IF A$=“L" THEN LET Add inaline 126
:‘;55&‘5:06;:5;"5:605“8 126 IF R=1 THEN LET
X Q(C)=N:LET C=C+1

Now, whenever a note is played, the

: and lines
appropriate music comes up on the
screen. To record the notes, they must 1001 DIM Q(64)
be stored in an array so let's set up 1008 LET R=0@:LET NTS=1
array Q() and provide a facility load 6399 REM PLAY BACK TUNE
and save tunes from tape or 6400 CLS:PRINT”HOLD B DOWN
Microdrive. Add to the main menu: TO HEAR TUNE”
" 6410 LET M=2:LET G=0
3130 ;rg‘hg G...TUNE EDIT A28 FoR E=1 T6 NTS

ol 6430 LET N=Q(C):GOSUB 2000:

600@:REM TUNE EDIT MENU GOSUB 4200
6440 NEXT C
6000 CLS 6445 GOSUB 1500
6010 PRINT“TUNE EDIT MENU” 6450 RETURN
6@2@ PRINT

6030 PRINT“A...NEW TUNE”

6040 PRINT“B...PLAY BACK
TUNE"

6050 PRINT“C...EDIT TUNE”

6060 PRINT“D...SAVE TUNE”

6070 PRINT“E...LOAD TUNE”

6080 PRINT“@...MAIN MENU”

6200 LET A$=INKEY$

6210 1IF A$="A”" THEN GOSUB
6300:GOTO 6000

6220 1IF A$="B” THEN GOSUB
6400:G0TO 6000

6230 IF A$="C" THEN GOSUB
6700:GOTO 6000

6240 1IF A$=“D" THEN GOSUB
6500:G0T0 6000

6250 1F A$="E” THEN GOSUB
6600:GOTO 6000

6255 IF A$="0" THEN RETURN

6260 GOTO 6200

6299 REM NEW TUNE

6300 LET R=1:REM SET RECORD
FLAG

6310 LET C=1:LET M=2:LET
G=0:CLS:GOSUB 100

6320 LET NTS=C:LET R=0

6330 RETURN

113
Sound

Insert lines:

150@ PRINT AT 21,0;“PRESS
SPACE TO CONTINUE”

151@ IF INKEY$<>" ” THEN
GOTO 1510

1520 RETURN

6499 REM SAVE THAT TUNE

6500 INPUT”ENTER FILE NAME ”;
F$

6510 SAVE *M”;1;F$ DATA QQ)

6520 RETURN

6599 REM LOAD THAT TUNE

6600 INPUT“ENTER FILE NAME ”;
F$
6610 LOAD *“M’;1;F$ DATA QQ)

6620 RETURN

To allow editing, some of the
program must be changed around a
little. The only routine that needs
altering is to make line 115 a
subroutine in its own right. Simply LIST
115 and then edit it. Change the line
number to 150 and change 115to
GOSUB 150. Then make a new line 160
RETURN.

This allows the keyboard reading
routine to be used separately.

6699 REM EDIT THAT TUNE
6700 CLS:PRINT” STEP
THROUGH THE TUNE

BY “:PRINT” PRESSING
SPACE. USE "X TO EXIT.”
PRINT“TO CHANGE A
NOTE, PRESS THE NEW
NOTE KEY ”

LET M=8:LET G=0

FOR C=1 TO 64

LET N=Q(C):GOSuUB
4200:BEEP .1,N

LET A$=INKEY$:IF A$=""
THEN GOTO 6740

IF A$=“X" THEN LET
C=64

6710

6715
6720
6730
6740

6745

114

6750 IF A$<>" ” THEN GOSUB
150:BEEP .1,N:LET
Q(C)=N:LET G=6—1:
GOSUB 4200

IF C>NTS THEN LET
NTS=NTS+1

6770 NEXT C

6780 RETURN

Obviously, improvements can be
made to this program but it does lay
the basis for a composing program.
The way in which it was constructed
shows some of the methods of program
modification and construction.
Particularly the need for documenting
the program with REMs.

The main use of the Spectrum's
sound generator is to create
background noises for games, 1.e. zaps,
bangs, kapows etc. Most of these are
easy to construct and are documented
in many other books and manuals. For
completeness, we will include a few
such effects here, to give you an idea
of what can be achieved. For instance,
a spaceship taking off:

FOR T=0 TO 69
FOR S=@ TO 5
BEEP .005,T
NEXT S

NEXT T

6755

Sound

To land it simply change the first line
to:

1@ FOR T=69 TO @ STEP —1
To get a fire engine on the scene, use

10 BEEP .5,10
20 BEEP .5,5
30 GOTO 10

For more effective noises, it is better to
access the Spectrum’s speaker
directly. Using the OUT(254)
Instruction this can be done fairly
easily. Unfortunately, the border
colour is also controlled from here so
we must OUT the correct colour as
well as the sound. For example;

10 OUT 254,16
20 OUT 254,0
30 GOTO 10

gives a nice machine type sound but
the border changes colour. The first
three bits of the byte that is output
control the red, blue and green
colours. To maintain the current
border colour you must make sure that
the mix is correct. This can be
achieved with a little experimentation.
Try this:

10 FOR T=@ TO 7
20 OUT 254,T

25 PRINT T

30 PAUSE @

40 NEXT T

This shows the colours that can be
obtained. Simply adding or subtracting
16 from the selected colour number
turns the speaker on and off. So
selecting a white border for the
machine sound program is done like
this:

10 OUT 254,23
20 OUuT 254,7
30 GOTO 1@

118
Sound

where 23 1s 16+7. If you alter line 10 to
OUT 254,16+ 7 you will notice a
change in the frequency of the sound
due to the Spectrum having to evaluate
16+7 every time it goes through the
loop.

To get a Geiger counter moving
away from a radiation source we can
use:

FOR T=0 TO 100

OUT 254,23

oUT 254,7

FOR S=0@ TO T:NEXT S
NEXT T

and to get random pulses:

10 OUT 254,23:0UT 254,7
20 FOR T=@ TO INT

(RND*1@)—1:NEXT T
30 GOTO 10

The amount by which RND is
multiplied gives the average
frequency of these pulses,

There are many more tricks that can
be achieved by accessing the OUT
254 directly but to get any good effects
1t 1s usually necessary to resort to
machine code. Such things as white
noise, and cricket or helicopter sounds
are then possible but the means are a
little beyond this book.

Projects

[J Improve on the music composer
program to give a full screen editor
to change the notes and allow them
to be printed out (try the COPY
command). The composer program
could also be modified to produce
sharps and flats with the graphics,
although you will probably need to
redefine the main character set to
get enough graphics characters.

Experiment with the BEEP
command to get various sound
effects, then modify your programs
to do the same thing with OUT 254.

116

Look up pulse width modulation
and see how this can be used to
enable the Spectrum to produce
speech.

Sound

N

117

The Spectrum that you buy in the
shops is excellent value, but after
you've done a bit of programming on it
you'll run into a couple of major
disadvantages, including the difficulty
involved in producing a printout and
the slow loading and saving times

associlated with tape storage. The
popularity of the Spectrum has meant
that a number of solutions to these
problems have been developed, not
least of them being Sinclair's own
Interface 1.

To understand what Interface 1 is you
have to look a little at the basic design
of the Spectrum. The machine as it
stands is a self-contained unit that
communicates with the outside world
only through its TV output and its tape
sockets. At the back of the machine
there is also something called an ‘edge
connector' which is basically an
extension of the computer's main
circuit board. If you look at this you'll
see a number of lines which are
potentially communications channels.
On more expensive computers
these lines are formed into a number

of sockets that allow you to plug into
printers, monitors and so on, but you
can see that it's actually a lot cheaper
just to design the circuit board so that
these lines project out of a hole in the
back of the machine, and worry about
the plugs later.

What Interface 1 does is to take
these lines and use them for three
specific purposes — a printer interface,
control of the Sinclair Microdrives, and
a networking facility. It's worth looking
at these three areas in a little more
detall.

118
Interface 1 and interfacing

The printer interface

There are essentially two standard
printer interfaces for use with
computers, Centronics, or parallel,
and RS232, or serial. Interface 1 uses
the latter. Without getting too technical
the easiest way to explain the
difference between these is that a
parallel interface sends data along a
number of lines simultaneously while a
serial interface sends data along one
line. You can vary the speed and form
of data transfer with a serial interface,
but you cannot with a parallel
interface.

Now a consequence of this is that
you can use a variety of methods to
carry serlal data — you can send it
along telephone lines, for example,
simply by converting the signal to
sound and back again. The RS232

therefore gives you the opportunity to
communicate with other micros, or
with devices like robots and burglar
alarms. So RS232 is about
communications and control, and all
you need do to open this world up is to
write the software!

If you simply want a printer interface
in order to produce written output, for
word processing or for listing your
programs, the Centronics interface is
probably more convenient. It lacks the
flexibility of RS232, but because you do
not have to set data transfer rates it is
often less trouble to use. Although
Interface 1 doesn't have this facility you
can get Centronics interfaces for the
Spectrum, and you'll find a number of
these listed at the end of this chapter.

ooooooo

DDDUUUU|
ooooonoao

ooo

119
Interface | and interfacing

The network

Interface 1 includes a facility for
something called a local area network’
— this is essentially a group of
computers operating within cable-
length of one another, and linked by
those cables. Sinclair's system will
support anything from two to sixty-four
Spectrums linked in this way, and,
although there are things youand a
few friends could use the network for,
the most obvious application is in
schools,

The basic use of the network is
straightforward, and employs versions
of other Spectrum/Interface 1
commands for control purposes. In
order to send information, for example
you use a variation on the SAVE
command, while to receive you use
LOAD - the only difference is that
you're SAVEing to and LOADing from
a Spectrum, rather than tape.

If you do have a number of friends
who own Interface 1 then it might be
worthwhile to develop some form of
Interactive game that would allow you
to use the networking facility — there
are already a few of these being sold
commercially, but there are plenty of
1deas that could still be developed.

oaa 1
oooonDooonor
cooooonon
JOonooopannc

The Microdrives

The idea of the Sinclair Microdrive is
that it should provide a cheap and
effective alternative to disk storage,
and broadly speaking it does this. The
basic unit is a black box about the size
of your fist that will take a small
cartridge containing a continuous tape
loop. With disk storage you can usually

120
Interface 1 and interfacing

load programs by using ‘random
access' —l.e. the disk drive unit can go
to any part of the disk to pick up the
information to be loaded, rather like a
record player can.

With tape units you have to wind
through the whole of the tape to get to
a particular program. The Microdrive
Is a tape unit, but has the advantage
that it runs so fast that it only takes
elght seconds or so to go through the
entire tape - its access times are
therefore comparable to those of some
disk drive units.

TRY THIS

Because of the improved access times
1t's feasible to do things with
Microdrives that you cannot do with
tape. Let's say you want a way to
display your artistic talents to your
friends, and although you have an
excellent drawing program, you've just
got so many pictures you can't fit them
all in memory at once:

10 CLS

20 PRINT

30 PRINT “FILM SHOW”

40 PRINT

5@ INPUT “ENTER NUMBER OF
PICTURES ON
CARTRIDGE”; A$

60 IF VAL A$<1 OR VAL
A$>20 THEN BEEP 1,1:
GO TO 50

70 LET A=VAL A$: CLS

80 PRINT

90 PRINT “SELECT MODE”

100 PRINT “1...FOR
CONTINUOUS SHOW”

105 PRINT “2...FOR PAUSE
BETWEEN PICTURES”

121
Interface 1 and interfacing

"11@ PRINT “3...TO SELECT A
PICTURE”

IF INKEY$=“1" THEN FOR
N=1 TO A: LOAD *»M’;1;
STR$(N) SCREENS:

NEXT N

IF INKEY$="2" THEN FOR
N=1 TO A: LOAD
*“M”;1;STR$(N)SCREENS :
PAUSE @: NEXT N

IF INKEY$="“3" THEN
PRINT: INPUT “PICTURE
NUMBER? ”;N: LOAD
*“M’;1;STR$(N) SCREENS$
150 GO TO 90

What you've got here is the basis of
an interesting little slide show
program. You'll see it's a lot faster than
tape, but it's still a little slow. But as you
know the Spectrum has the space in
memory to hold a number of screens at
one time, so you could use the
program here as the basis for a sort of
animated sequence. As it stands the
program can be used to recall any
SCREENS$ saved as a number. If you
want to do anything cleverer though
you should be able to work it out.

120

130

140

FORMAY

ERVASSE

FORMAT “M’;N;“NAME”

CAT N

ERASE “M’;N; “FILENAME”
SAVE *“M’;N;“FILENAME”
LOAD *“M’;N;“FILENAME”
VERIFY *“M’;N;“FILENAME”
MERGE *“M’;N;“FILENAME”

As you can see from the table the
basic Microdrive handling commands,
with the addition of FORMA'T, CAT
and ERASE, are similar to the
Spectrum's tape handling commands,
although the syntax is more
complicated. You must specify a
filename when loading, saving etc.,
and you must also specify the
Microdrive number (N in the table).

The Interface 1 unit has its own
ROM, and this is switched into the
Spectrum's ROM as a sort of error
intercept. Normally you'll get an error
message if you try to use a Microdrive
command, but with Interface 1
connected the Spectrum checks with
the Interface 1 ROM first, and if the

122
Interface 1 and interfacing

command is in fact OK it executes it.
Note that there could be a useful bonus
here - if you can head off the ROM
routines dealing with this you could
actually add your own commands to
the Spectrum.

The second Spectrum peripheral
device of interest to us is Interface 2.
This 1s simpler than Interface 1 in that it
only provides two extra facilities, for
ROM cartridges and joysticks. The
ROM cartridges are useful in that they
are the fastest possible way to load a
game, by virtue of the fact that they're
actually switching in an area of
memory, but it's not possible for you to
SAVE your own programs onto them.

The cartridges do however open a
number of opportunities for things like
switching in whole new operating
systems for the Spectrum, and no
doubt one day someone will start
selling something like this.

The joysticks however are
something you can incorporate in your
programs. The following table shows
how the two joysticks relate to the
Spectrum's keyboard:

Joystick
movement

Left
Right
Down
Up
Fire
Left
Right
Down
Up
Fire

>
<

O WO U S WD — O

Joystick

— — — — — DO DD DO D DO

123

So 1f you plug two joysticks into
Interface 2 you'll get the same effect as
using these keys, provided, of course,
your program allows for it.

Normally you'd use INKEY$ to do
this, but this has the disadvantage of
being unable to read two key presses
at the same time, so it's not possible to
move and fire at the same time.
There is, however, another command
that can be used.

The function IN and the statement
OUT are used to control the Input/
QOutput (/O) ports of the Spectrum. By
typing:

IN address

you can get the byte from the port
whose address you use returned. You
write to that port by using:

OUT address, value

The one that concerns us at the
moment is IN. The addresses
governing the two joystick ports are
61438 for joystick 1 and 63486 for 2. So
saying IN 61438 will return us an eight
bit number giving us information on
the status of joystick 1. There are five
movements to be governed by the
port, so it's only the first five of the
eight bits we're interested in:

Movement Joystick 1 Joystick 2
IN61438 IN 63486

Fire Bit 0 Bit4

Up Bit 1 Bit 3

Down Bit 2 Bit2

Right Bit 3 Bit 1

Left Bit 4 Bit 0

The situation here is analogous to that
of the KSTATE system vanables. By
moving joystick 1 you change the
number held in 61438, and as you see
from the table above each of the first
five bits of that number governs one
particular action. So in order to use IN
to move something on the screen we

Interface 1 and interfacing

have to examine these bits
individually. First we need a variable
for each movement:

10 LET F=0: LET U=0: LET
D=@: LET R=@: LET L=0

Here we've got five variables, one
for each movement, and we've set
them to zero, i.e. stationary. The next
step is to read the value at 61438, and
remove the bits 5, 6 and 7, as we don't
want them:

20 LET N=255—IN 61438

30 IF N>127 THEN LET
N=N—-128

40 IF N>63 THEN LET
N=N—64

50 IF N>31 THEN LET
N=N-32

We now have all the bits we want. So
now we read them individually, and
modify the state of our five variables
depending on what's being done with
the stick:

60 IF N>15 THEN LET
N=N—16: LET L=1
70 IF N>7 THEN LET N=N-8:

LET R=1

80 IF N>3 THEN LET N=N—4:
LET D=1

90 IF N>1 THEN LET N=N-2:
LET U=1

100 IF N=1 THEN LET F=1

All you need do now is to write a
topsy-turvy routine for joystick 2, and
plug in the movement based on the
values of the variables.

Other peripherals

This book isn't really the place for a
buyer's guide to Spectrum
peripherals, but there are a number of
things you might be interested in
learning more about. Should you wish
to get yourself a Centronics interface,
either instead of or in addition to
Interface 1 then switchable
Centronics/RS232 interfaces are
manufactured by Euroelectronics and
Morex. Both these are compatible with
Interface 1, and this is important, as
peripherals made by some companies
will not work with Interface 1
connected.

Two other devices you may be
interested in are a monitor and a
proper keyboard for the Spectrum. In
most cases a new keyboard will mean
invalidating your Spectrum’s
guarantee, as you'll have to open the

case, but this is unnecessary in a few
cases. Probably the best of the ones
that force you to open your Spectrum is
made by Transform, and of those that
don't the Stonechip is one you might
like to look at.

You can really only connect a
monitor if you know a little about
soldering, or you know someone who
does. Look at the plan of the edge
connector at the end of chapter 23 of
the Spectrum manual and you'll see
where two lines are, Video and OV.
Connect the Video line to the central
core of your TV cable and 0V to the
outside, and you have a composite
video output. In the case of the issue 3
Spectrum (if you've bought your
Spectrum any time since Christmas
1983 it will be an 1ssue 3) this is all you
need to do, but there is another

124

Interface 1 and interfacing

connection to make on earlier models.
In any event, don't do this unless you
know exactly what you're doing.

There are plenty more add-ons you
can buy for the Spectrum, and if you do
want to expand your system the best
thing you can do is keep an eye on
what's being written and advertised in
the specialist Sinclair magazines. You
should also be able to find the
addresses of the companies
mentioned above. One last word of
warning - always make sure the
company is still in business, and that it
stocks the product you want, before
sending money through the post, and
you'll save yourself a lot of
disappointment.

125
Interface | and interfacing

Checklist m——

In this chapter you should have
learned:

O The difference between an RS232
and a Centronics interface.

[0 What a local area network is.

O The difference between Random
Access and Serial Access.

{0 How to tailor your programs so they
work with Interface 2.

126
Interface 1 and interfacing

Appendix

ASCII codes of the Spectrums character set

Code Character Hex 280 Assembler —after CB —after ED
0 00 NOP RLC B
1 01 LD BCnn RLCC
2 02 LD (BC) A RLCD
3 notused 03 INCBC RLCE
4 04 INCB RLCH
5 05 DECB RLCL
6 PRINT comma 06 LD Bn RLC (HL)
7 EDIT 07 RLCA RLC A
8 cursor left 28 EX AF AF’ RRCB
9 cursor right 09 ADD HL,BC RRCC

10 cursor down 0A LD A,(BC) RRCD

11 Cursor up 0B DEC BC RRCE

12 DELETE oC INCC RRCH

13 ENTER 0D DECC RRCL

14 number) LD Cn RRC (HL)

15 not used oF RRCA RRC A

16 INK control 10 DINZ n RLB

17 PAPER control 11 LD DE nn RLC

18 FLASH control 12 LD (DE) A RLD

19 BRIGHT control 13 INC DE RLE

20 INVERSE control 14 INCD RLH

21 OVER control 15 PEC/E RLL

22 AT control 16 LDDn RL (HL)

23 TAB control 17 RLA RLA

24 B 18 JRn RRB

25 19 ADD HL,DE RRC

26 1A LD A,(DE) RRD

21 1B DEC DE RRE

28 Foeused IC INCE RR H

29 1D DEGE RRL

30 1E LDEn RR (HL)

31 _ IF RRA RRA

32 space 20 JRNZn SLAB

33 ! 21 LD HL,nn SLAC

34 t 22 LD (nn),HL SLAD

35 W 23 INC HL SLAE

36 $ 24 INCH SLAH

37 % 25 DECH SLAL

38 & 26 LD Hn SLA (HL)

39 L 21 DAA SLA A

40 (28 JRZn SRA B

4]) 29 ADD HL HL SRAC

128
Appendix

128
Appendix

Code Character Hex Z80 Assembler —after CB —after ED
42 * 2A LD HL,(nn) SRAD

43 - 2B DEC HL SRAE

44 20 INCL SRA H

45 = 2D DECL SRAL

46 } 2E LDLn SRA (HL)

47 } 2F CPL SRA A

48 0 30 JRNCn

49 1 31 LD SP,nn

50 2 32 LD (nn),A

51 3 33 INC SP

52 4 34 INC (HL)

53 5 35 DEC (HL)

54 6 36 LD (HL),n

55 7 37 SCF

56 8 38 JRCn SRL B

57 9 39 ADD HL,SP SRLC

58 y 3A LD A (nn) SRLD

59 : 3B DEC SP SRLE

60 < 3 INCA SRL H

61 = 3D DECA SRLL

62 > 3E LD An SRL (HL)

63 ? 3F CCF SRL A

64 @ 40 LDB,D BIT 0,B IN B,(C)

65 A 41 LDB.C BIT0,C OuT (C),B
66 B 42 LDB,D BIT 0,D SBC HL,BC
67 C 43 LD B,E BITQ,E LD (nn),BC
68 D 44 LD BH BIT 0,H NEG

69 E 45 LDB,L BITQ,LL RETN

10 F 46 LD B,(HL) BITQ,(HL) IM®

2l G 47 LD BA BIT 0,A LDLA

12 H 48 LDCB BIT 1,B IN C,(C)

A3 I 49 LBEE BIT LC OouT (©),C
74] 4A LDCD BEL LB ADC HL,BC
15 K 4B LDCE BIT LLE LD BC,(nn)
16 L 4C LD CH BIT 1,H

17 M 4D LDCL BIT 1L RETI

18 N 4E LD C,(HL) BIT 1,(HL)

79 @) 4F LDCA BIT 1,A LDRA

80 P 50 LD DB BIT 2,B IND,(C)

81 Q 5l LDD,C BIT 2,C ouT (C),D
82 R 52 LD D,D BIT 2,D SBC HL,DE
83 S 53 LDDE BIT2.E LD (nn),DE

Code Character Hex Z80 Assembler —after CB —after ED
84 i 54 LD DH BIT 2,H

85 U 55 LDDL BIT 2,

86 \Y 56 LD D,(HL) BIT2,(HL) IM1

87 W 57 LDD,A BIT 2,A LDAI

88 X 58 LDEB BIT 3,B INE(C)

89 Wi 59 LDEC BIT3C OUTEELE
90 Z 5A LDED BIT 3D ADCHL,DE
91 [5B LDEE BIT 3,E LD DE,(nn)
92 / 5C LDEH BIT 3,H

93] 5D LDE,L BIT 3,

94 1 5E LD E,(HL) BIT3,(HL) IM2

95 — 5F LDE A BIT 3,A LDAR

96 £ 60 LD H,B BIT 4B IN H,(C)

97 a 61 EDHEC BIT 4,C OuUT (C),H
98 b 62 LDHD BIT 4,D SBC HL,HL
99 c 63 LDHE BIT4,E LD (nn),HL
100 d 64 LD HH BIT 4, H

101 e 65 LD H,L BIT 4,L

102 f 66 LD H,(HL) BIT 4,(HL)

103 g 67 LD HA BIT 4,A RRD

104 h 68 LD LB BIT 5,B IN L,(C)
105 1 69 LDLC BIT5,C OuT (O),L
106] 6A LDLD BIT 5,D ADC HL HL
107 k 6B FExIE BIREE LD HL,(nn)
108 1 6C LDLH BIT 5,H

109 m 6D LDLL BIT5,L

110 n 6E LD L,(HL) BIT 5,(HL)

111 o] 6F LDL,A BIT5,A RLD

112 p 10 LD (HL),B BIT 6,B INF,(C)
113 aq 71 LD (HL),C BIT 6,C

114 r 72 LD (HL),D BIT 6,D SBC HL,SP
115] 73 LD (HL),E BIT6,E LD (nn),SP
116 t 74 LD (HL),H BIT 6,H

117 u 75 LD (HL),L BIT6,L

118 v 76 HALT BIT 6,(HL)

119 w 17 LD (HL),A BIT 6,A

120 X 78 LD AB BIT7,B INAC)
121 y 79 LDAC BIT7,C OUT (C),A
122 z 1A LDAD BIT7,D ADC HL,SP
123 { 7B LDAE BITT7,E LD SP,(nn)
124 | 7C LDAH BIT 7,H

125 } e, LDAL BIT 7L

126 ~ 7B LD A (HL) BIT 7,(HL)

127 © TF LDAA BIT7,A

130
Appendix

Code Character Hex Z80 Assembler - after CB —after ED
128 O 80 ADD AB RES0,B

129 ™ 81 ADDAC RES0,C

130 Fl 82 ADDAD RES@,D

131 = 83 ADDAE RESQ.E

132 (s 84 ADD A H RES 0,.H

133 1 | 85 ADD AL RES QL

134 N 86 ADD A,(HL) RES 0,(HL)

135 | 87 ADDAA RES QA

136 "3 88 ADCA,B RES 1B

137 - 89 ADCAC RES 1.

138 [3] 8A ADCAD RES 1,D

139 [| 8B ADCAE RES 1,E

140 = 8C ADC A H RES 1.H

141 I] 8D ADCAL RES 1,L

142 = 8E ADC A,(HL) RES 1,(HL)

143 m 8F ADCAA RES 1A

144 (a) 90 SUBB RES 2,B

145 (b) 91 SUBC RES2,C

146 (c) 92 SUBD RES2,D

147 (d) 93 SUBE RES2.E

148 (e) 94 SUB H RES 2,H

149 (f) 98 SUB L RES 2L

150 (g) 96 SUB (HL) RES 2,(HL)

151 (h) 97 SUB A RES2 A

152 (1) 98 SBCAB RES 3,B

154 k) F : 9A | ES3.D

155 (1) |9¥@Phi®S g SBCAE RES3E

156 (m) 9C SBC A H RES 3,H

157 (n) 9D SBC AL RES3,L

158 (o) 9E SBC A,(HL) RES 3,(HL)

159 (p) 9F SBCA A RES3,A

160 (a) AQ AND B RES 4,B LDI
161 (1) Al ANDC RES 4,C CP1
162 (s) A2 ANDD RES4,D INI
163 (3] A3 ANDE RES4,E OUTI
164 (u)" Ad ANDH RES 4 H

165 RND A5 AND L RES4,L

166 INKEYS A6 AND (HL) RES 4,(HL)

167 PI1 A7 AND A RES 4,A

168 FN A8 XORB RES 5,B LDD
169 POINT A9 XORC RESB.C CPD
170 SCREENS AA XORD RES5,D IND
171 ATTR AB XORE RESS.E OUTD

131
Appendix

Code Character Hex Z80 Assembler —after CB —after ED
172 AT AC XORH RES 5,H

173 TAB AD XOR L RES5,L

174 VALS AE XOR (HL) RES 5,(HL)

175 CODE AF XOR A RES§ A

176 VAL BO ORB RES 6,B LDIR
177 LEN Bl ORC RES6,C CPIR
178 SIN B2 ORD RES6,D INIR
179 COs B3 ORE RES6,E OTIR
180 TAN B4 ORH RES 6,H

181 ASN B5 ORL RES6,L

182 ACS B6 OR (HL) RES 6,(HL)

183 ATN B7 ORA RES 6 A

184 LN B8 CPB RES 7B LDDR
185 EXP B9 CPC RES7,C CPDR
186 INT BA CPD RES7D INDR
187 SQR BB CPE REST,E OTDR
188 SGN BC CPH RES 7 H

189 ABS BD CPL RES7,L,

190 PEEK BE CP (HL) RES 7,(HL)

191 IN BF CPA REST7,A

192 USR Co RET NZ SET 0,B

193 STRS Cl POP BC SET0.C

194 CHR$ C2 JP NZ,nn SET0,D

195 NOT G3 JP nn SETQ,E

196 BIN C4 CALL NZ nn SET Q,H

197 OR C5 PUSH BC SETOQ,L

198 AND Co6 ADD An SET 0,(HL)

199 <= C7 RSTQ SET 0,A

200 = C8 RET Z SET 1,B

201 <= C9 RET SEV1G

202 LINE CA JPZnn SETLIm

203 THEN CB SET1.H

204 TO CE CALL Z, nn SET LLH

205 STEP CD CALL nn SET 1,L

206 DEF FN CE ADCAn SET 1,(HL)

207 CAT CF RST 8 SET LA

208 FORMAT Do RET NC SET 2,B

209 MOVE D1 POP DE SET2.C

210 ERASE D2 JP NC,nn SET2,D

211 OPEN # D3 OUT (n), A SELoE

212 CLOSE # D4 CALL NCnn SET 2,H

213 MERGE D5 PUSH DE SETZL

214 VERIFY D6 SUBn SET 2,(HL)

oLa BEEP D7 RST 16 SET 2 A

132
Appendix

133
Appendix

Code Character Hex Z80 Assembler —after CB —after ED
216 CIRCLE D8 RETC SET 3,B
217 INK D9 EXX SET3.C
218 PAPER DA JP Cnn SET3,D
219 FLASH DB IN A, (n) SET 3,E
220 BRIGHT DG CALL Cnn SET3H
221 INVERSE DD prefixes SET 3, Lu

instructions

using IX
222 OVER DE SBC An SET 3,(HL)
223 ouT DF RST 24 SET 3,A
224 LPRINT EO RET PO SET4,B
225 LLIST El POP HL SET4,C
226 STOP E2 JP PO,nn SET 4,D
227 READ E3 EX (SP),HL SET4E
228 DATA E4 CALL PO,nn SET 4,H
229 RESTORE 5] PUSH HL SET 4,L
230 NEW E6 ANDn SET 4,(HL)
231 BORDER 574 RST 32 SET4,A
232 CONTINUE E8 RET PE SETS.B
233 DIM E9 JP (HL) SETS.C
234 REM EA JP PE.nn SET 5D
235 FOR EB EX DE,HL SET5.E
236 GOTO EC CALL PEnn SET 5,H
237 GO SUB ED SETSL
238 INPUT ER XORn SET 5,(HL)
239 LOAD EF RST 40 SET5,A
240 LIST FO RETP SET 6,B
241 LET Fl POP AF SET 6,C
242 PAUSE EZ JP P,nn SET 6,D
243 NEXT F3 DI SET6,E
244 POKE F4 CALL P,nn SET 6,H
245 PRINT E5 PUSH AF SET6,L
246 PLOT F6 ORn SET 6,(HL)

- 247 RUN BT RST 48 SET6,A

248 SAVE F8 RETM SETT,B
249 RANDOMIZE F9 LD SP,HL SERTLC
250 IF FA JP M,nn SETT.1)
251 CLS FB El SELLE
252 DRAW FC CALL M,nn SETYL H
253 CLEAR FD prefixes SETTLi

instructions

using IY
254 RETURN FE CPn SET 7,(HL)
255 COPY FF RST 86 SETT7A

The number in column 1 is the number of bytes in the variable. For two bytes,
the first one is the less significant byte.

Do

Sinclair

Bytes Address Name Contents

8 23552 KSTATE Used in reading the keyboard.

1 23560 LASTK Stores newly pressed key.

1 23561 REPDEL Time (in 50ths of a second) that a key must be
held down before it repeats. This starts off at
35, but you can POKE in other values.

1 23562 REPPER Delay (in 50ths of a second) between succes-
sive repeats of a key held down: initially 5.

2 23563 DEFADD Address of arguments of user-defined function
if one is being evaluated; otherwise 0.

1 23565 K DATA Stores 2nd byte of colour controls entered from
keyboard.

2 23566 TVDATA Stores bytes of colour, AT and TAB controls
going to television.

38 23568 STRMS Channel address attached to streams.

2 23606 CHARS Pointer to the character set.

1 23608 RASP Length of warning buzz.

1 23609 PIP Length of keyboard click.

1 23610 ERR NR Error report code (less 1).

1 23611 FLAGS Basic flags.

1 23612 TV FLAG Television flags.

2 23613 ERR SP Error return address.

z 23615 LIST SP Address of the automatic listing return address.

1 23617 MODE Cursor type K, L, C, Eor G.

2 23618 NEWPPC Basic line to be jumped to.

1 23620 NSPPC Basic statement number in line to be jumped
to.

23621 PPC Basic line number of statement currently being

executed.

1 23623 SUBPPC Number within a Basic line of statement being
executed.

1 23624 BORDCR Border colour * 8 and the attributes used for
the lower half of the screen.

2 23625 EPPC ‘Number of current line (with program cursor).

2 23627 VARS Basic variables address.

2 23629 DEST Address of variable in assignment.

2 23631 CHANS Channel data address.

134
Appendix

Sinclair

.
0o DD —

Bytes Address Name Contents
2 23633 CURCHL Address of information currently being used
for input and output.
2 23635 PROG Address of Basic program.
2 23637 NXTLIN Address of next line in Basic program.
2 23639 DATADD Address of terminator of last DATA item.
Vi 23641 E LINE Address of command being typed in.
2 23643 K CUR Address of cursor.
2 23645 CHADD Address of the next character to be inter-
preted.
2 23647 XPTR Address of the character after the] marker.
2 23649 WORKSP Address of temporary work space.
2 23651 STKBOT Address of bottom of calculator stack.
2 23653 STKEND Address of start of spare space.
1 23658 BREG Calculator's B register.
2 23656 MEM Address of area used for calculator's memory.
1 23658 FLAGS?2 Flags.
1 23659 DF SZ The number of lines (including one blank line)
in the lower part of the screen.
2 23660 S TOP The number of the top program line in auto-
matic listings.
2 23662 OLDPPC Line number to which CONTINUE jumps.
| 23664 OSPCC Number within line of statement to which
CONTINUE jumps.
23665 FLAGX Flags.
23666 STRLEN Length of string type destination in assignment.
23670 SEED The seed for RND. This is the variable that is
set by RANDOMIZE.
3 23672 FRAMES 3 byte (least significant first). Frame counter.
Incremented every 20ms.
2 23675 UDG Address of 1st user-defined graphic.
1 23677 COORDS x-coordinate of last point plotted.
1 23678 y-coordinate of last point plotted.
1 23679 P POSN 33-column number of printer position.
1 23680 PRCC Less significant byte of address of next position

for LPRINT to print at (in printer buffer).

135
Appendix

Sinclair

Bytes Address Name Contents

1 23681 Not used.

2 23682 ECHOE 33-column number and 24-line number (in
lower half) of end of input buffer.

2 23684 DECE Address in display file of PRINT position.

o 23686 DFCCL Like DF CC for lower part of screen.

1 23688 S POSN 33-column number for PRINT position.

1 23689 24-line number for PRINT position.

2 23690 SPOSNL Like S POSN for lower part.

1 23692 SCRCT Scroll counter.

1 23693 ATTRP Permanent current colours.

1 23694 MASK P Used for transparent colours, etc.

1 23695 ATTRT Temporary current colours.

1 23696 MASKT Like MASK P, but temporary.

1 23697 PFLAG Flags.

30 23698 MEMBOT Calculator's memory area.

2 23728 Not used.

2 23130 RAMTOP Address of last byte of Basic system area
- RAM TOP. .

2 23732 PRAMT Address of last byte of physical RAM.

136
Appendix

Hexadecimal conversion chart

Hex Decimal Binary

00 0 00000000
21 1 00000001
02 2 00000010
03 3 00000011
04 4 20000100
@5 5 20000101
06 6 00000110
a7 7 00000111
08 8 20001000
09 9 00001001
DA 10 00001010
0B 11 00001011
ac 12 00001100
@p 13 00001101
(]3 14 00001110
oF 15 00001111
10 16 00010000
11 17 00010001
12 18 00010010
13 19 20010011
14 20 00010100
15 21 00010101
16 22 00010110
17 23 000102111
18 24 00011000
19 25 00011001
1A 26 00011010
1B 27 00011011
1C 28 00011100
1D 29 00011101
1E 30 00011110
1F 31 20011111
20 32 20100000
21 33 00100001
22 34 00100010
23 35 00100011
24 36 00100100
25 37 00100101
26 38 00100110
27 39 20100111
28 40 20101000

137
Appendix

138
Appendix

00101001
00101010
00101011
00101100
20101101
20101110
20101111
00110000
00110001
20110010
20110011
00110100
20110101
00110110
20110111
00111000
20111001
20111010
20111011
20111100
20111101
00111110
20111111
021000000
01000001
01000010
01000011
01000100
01000101
01000110
01000111
21001000
21001001
01001010
01001011
01001100
01001101
01001110
21001111
021010000
21010001
21010010
21010011
21010100

128

139
Appendix

21010101
01010110
21010111
01011000
21011001
01011010
21011011
21011100
21011101
21011110
21011111
21100000
21100001
01100010
21100011
01100100
21100101
21100110
21100111
21101000
21101001
01101010
21101011
21101100
21101101
21101110
81101111
01110000
21110001
21110010
21110011
21110100
21110101
01110110
21110111
21111000
21111001
21111010
21111011
21111100
21111101
21111110
21111111
10000000

140
Appendix

10000001
10000010
10000011
10000100
10000101
10000110
10000111
10001000
10001001
10001010
10001011
10001100
10001101
10001110
10001111
10010000
10010001
10010010
10010011
10010100

10010101

10010110
10010111
10011000
10011001
10011010
10011011
10011100
10011101
10011110
10011111
10100000
10100001
10100010
10100011
10100100
10100101
10100110
10100111
10101000
10101001
10101010
10101011
10101100

141
Appendix

10101101
10101110
10101111
10110000
10110001
10110010
10110011
10110100
10110101
10110110
10110111
10111000
10111001
10111010
10111011
10111100
10111101
10111110
18111111
11000000
11000001
11000010
11000011
11000100
11000101
11000110
11000111
11001000
11001001
11001010
11001011
11001100
11001101
11001110
11001111
11010000
11010001
11010010
11010011
11010100
11012101
11010110
11010111
11011000

142
Appendix

11011001
11211010
11011011
11011100
11011101
11011110
11011111
11100000
11100001
11100010
11100011
11100100
11100101
11100110
11100111
11101000
11101001
11101010
11101011
11101100
11101101
11101110
11101111
11110000
11110001
11110010
11110011
11110100
11110101
11110110
11110111
11111000
11111001
11111010
11111011
11111100
11111101
11111110
11111111

8-A--B- € D B F

HMOOQEPOOoROM L WD — O

192

193

194

99
115
131
147
163
179
195

148
164
180
196

149
165
181
19

150
166
182
198

103
119
135
151
167
183

104
120
136
152
168
184

9
25
41
51
13
89

105
121
137
183
169
185

106
122
138
154
170
186

107
123
139
166
171
187

12
28
44
60
16
92
108
124
140
156
172
188

13
29
45
61
21
93
109
125
141
157
173
189

14
30
46
62
18
94
110
126
142
158
174
190

169
175
191

199 200 201 202 203 204 205 206 207
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 285

143

Appendix

Display File Attributes Printer Buffer

A

4 A 4

16384 22528 23296 23552
System Variables Microdrive maps m%?:;%n
23734 CHANS
80h BASIC program Variables 80h
PROG VARS ELINE
Command or NL | 80h | INPUT data

program line being edited

}

WORKSP
w, | ooy | Gaotmor [gy | Machie |
CoEi
STKBOT ~ STKEND op
GOSUB ? 3Eh | User Defined Graphics
stack

i |

RAM UDG PRAMT
TOP

144
Appendix

€05 62 82 12 92 G2 ¥2€2 22 1202 61 81 ZI 9T GI pI €T 2L 1T O1 6 8 L 9 § ¥ € ¢

Jauueld uaauds wnudadg

[

- 19 =4 00) TN (O 0D O S
— o o e o o e e — o N O]

Q —~ O M T W O M~ o

145
Appendix

[€ 0 62 82 12 92 GC ve€C ¢ 12 02 61 BT LI QU GI vI €T ST 11 01l 6 8 L 9 § ¥ € ¢

[

0O 8 — NN MW o~ S —
— o e o 4 o o 4 — O O

S ~ 0 M < WD © M~ 0

146
Appendix

[€ Q€ 62 82 L2 9¢ G¢ be€e 22 12 02 61 8L ZT QI ST v1 €T QI 1T Ol 6 8 L 9 § ¥ € 2

O = oM <D O~ O s
— o e o o — — — O O

S —~ g M W WM~ o

147
Appendix

[€ 0 62 82 L2 92 G2 V2 €2 22 12 02 61 8L ZI QI ST I €L QL IT Ol 6 8 L 9 § ¥ € @

[

0O 8 — NN M T W O~ S —
— e e e o~ e oe—— o~ O O

S —~ 0 M T D O M~

148
Appendix

[€0E 62 82 L2 92 G2 e €g 22 12 02 61 8L ZT QU ST vl €12l 1@l 6 8 L 9 S v € ¢

[

RS o~ O]) D @ 00N &R
—_ o e o e e e— — — o~ (O] O\

S ~ g M F W0 W~

149
Appendix

[E0QC 62 8212 92 G2 ve€2 2212 02 61 8L LI QI ST PI ETCL IT QL 6 8 L 9 § ¥ € ¢

[

O 8 — N M« W O© M~ S —
— o - e e e o e — - O O

S ~ 3 M T W O ™~

150

Appendix

[€ 0 62 8¢ Lg 9¢ G¢ v2 €¢ 22 12 0c 61 81 LTI QT ST vl €12l 1T @1 6 8 L 9 S ¥ € 2

[

O 8 — NN M= WmOoOMNOD S —
— o = e e o e — —o— O O

S~ M = D O M~

151
Appendix

[E0E 62 82 I 92 G2 vece 22 120261 8T ZT QI ST pI ECTICI IO 6 8 L 9 S ¥ € ¢

[

D e — N M W Wt~ oo S —
— e e o o - -l

S ~ O M = D O ~

152
Appendix

[£0S 62 82 12 92 G2 v2€2 221202 61 8L ZI QU ST kL EL I IT QL 6 8 L 9 § ¥ € ¢

[

O 8 — N MO < W O~ o0 —
—t e e e o — o~ — o~ O] O

S —~ 0 M T W W M~

153
Appendix

154

Index

155

A

ABS 20
ACS 21
address 60
adventure 42
AND 14
animation 90
arrays 33
ASCII 69
ASN 21
assembler 101
ATN 21
ATTR 87

B

Basic interpreter 100
BEEP 103

BIN 80

binary 80
branching 13
built-in functions 17

C

Centronics 119
channels 70
character positions 50
characterset 70
CHARS 87
CHR$ 29
clock 176
CCPE! 27,61
colour 57,68
COs 21

D

DATA 32
DIM 33
display file 51
DRAW 50

F

field editor 37
flags 72

flats 108

EOR.. | .INEXT 115

156
Index

frequency 108
functions 18

G

GOSUB 8

GOTO 8

graphics 22, 49, 719
grassfibre fill 54

H
hexadecimal 101

) {

information handling 32
INK 50

INKEY$ 27

INPUT 27

INT 20

Interactive programming 25
Interfacel 118, 119
Interface 2 123

interrupts 102

L
LEN 27
local area network 120

M

machine code 101
memory 99
memory map 57, 103
MENU 35, 43
Microdrive 118

N
NOT 14
notes 108

(o)

octave 108
OR 14
output port 103

P
PAPER 50

157
Index

PEEK 69

pixels 50

PLOT 80

pointer 83

pseudo random number 18

R

radians 21

RAMTOP 51
RANDOMIZE 19
RANDOMIZE USR? 101
READ 32

REM 43

RESTORE 33

RND 18

Rs232 119

S

scanning beam 91
screen 50
SCREEN$ 51
scroll 78

seed 18,76
semitones 108
SGN 20

sharps 108

SIN 21

sound 101, 107
sprites 90

stack pointer 72
streams 70
string array 42
structure 8
subroutines 10
system variables 68

T
TAN 21
tofill 54

U

ULA 91

user-defined graphics 80
USR 53

158
Index

v

VAL 27

vibrate 110
video RAM 91, 93

159

Programming with
added power

Turbocharge your ZX Spectrum

BETTER PROGRAMMING

Turbocharge your ZX Spectrum tells you how the
professionals do it. It concentrates on putting more power
where it matters - in your hands.

It shows how you can exploit your micro to the full and
how to approach programming problems the right way.

IN-DEPTH EXPLORATION

The great strength of the ZX Spectrum lies in its flexibility.
The swift development of games programming shows
justhow far it can be stretched and how much can be got
out of it.

Discovering its strengths and weaknesses for yourself
can be fun but it's not something you can hope to doin a
hurry. Thats where Turbocharge your ZX Spectrum
comes in.

THE RIGHT STUFF

Turbocharge your ZX Spectrum gives expert insights into
the full power of your ZX Spectrum. There are powerful
graphics and sound routines and many K's worth of
listings for you to explore and exploit.

FOR THE PROFESSIONAL TOUCH IN YOUR
PROGRAMS,
TURBOCHARGE YOUR ZX SPECTRUM

ISBN 0-582-91b04-b

Longman &
Computer
Books 780582'9

	Cover
	Contents

	Chapter 1 - Advanced introduction tho the working Spectrum
	Chapter 2 - Built-in functions
	Chapter 3 - Interactive programming
	Chapter 4 - Information handling
	Chapter 5 - Handling arrays
	Chapter 6 - Introduction to graphics
	Chapter 7 - Advanced colour
	Chapter 8 - The system variables
	Chapter 9 - User-defined graphics
	Chapter 10 - Sprites and animation
	Chapter 11 - Memory in detail
	Chapter 12 - Sound
	Chapter 13 - Interface 1 and interfacing
	Appendix
	Index

	Back cover

